Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5), the El Ni o(EN) and La Ni a(LN) events in positive and negative Pacific Dec...Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5), the El Ni o(EN) and La Ni a(LN) events in positive and negative Pacific Decadal Oscillation(PDO) phases are examined. In the observational data, with EN(LN) events the positive(negative) SST anomaly in the equatorial eastern Pacific is much stronger in positive(negative) PDO phases than in negative(positive) phases. Meanwhile,the models cannot reasonably reproduce this difference. Besides, the modulation of ENSO frequency asymmetry by the PDO is explored. Results show that, in the observational data, EN is 300% more(58% less) frequent than LN in positive(negative)PDO phases, which is significant at the 99% confidence level using the Monte Carlo test. Most of the CMIP5 models exhibit results that are consistent with the observational data.展开更多
The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface h...The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface height (SSH) change caused by the Pacific Decadal Oscillation (PDO-SSH). Here, the PDO- SSH signal is extracted from satellite altimeter data by multi-variable linear regression, and regional SLR in the altimeter era is calculated, before and after removing that signal. The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific, with the strongest signal confined to the tropical and North Pacific. Over the past 20 years, the PDO-SSH accounts for about 30%/-400% of altimeter-observed SLR in the regions 8° 15°N, 130°-160°E and 30°-40°N, 170°-220°E. Along the coast &North America, the PDO-SSH signal dramatically offsets the coastal SLR, as the sea level trends change sign from falling to rising.展开更多
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The resu...The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.展开更多
This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transi...This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation.展开更多
Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni-o-Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface tempera...Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni-o-Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900-2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Ni-o (La Ni-a) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO-BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Ni-o (La Ni-a) event exhibiting significant positive (negative) SSTAs over the tropical central-eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Ni-o-related (La Ni-a-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.展开更多
The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compar...The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compared with observations, most simulations successfully simulate the observed PDO pattern and its teleconnections to the SSTs in the tropical and southern Pacific. BNU-ESM, CanESM2, CCSM4, CESM 1 -FASTCHEM, FGOALS-g2, GFDL CM3, MIROCS, and NorESM 1 -M show better performance. Compared with the temporal phases of the observed PDO in the twentieth century, only five simulations -- from CNRM^CMS, CSIRO Mk3o6.0, HadCM3, and IPSL-CMSA-LR -- simulate an evolution of the PDO similar to that derived from observation, which suggests that current coupled models can barely reproduce the observed phase shifting of the PDO. To capture characteristics of the observed PDO in the twentieth century, a requirement is that all the relevant external forcings are included in the models. How to add realistic oceanic initial states into the model may be another key point.展开更多
Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the ...Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO.展开更多
This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic...This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic analysis and Empirical Orthogonal Function (EOF) methods.Significant cooling trends in the SOT in the tropical western Pacific were found over this 60-year period.The first EOF of the SOT in tropical Pacific displays an ENSO-like zonal dipole pattern on decadal time scale,and we considered this pattern in subsurface ocean temperature the tropical Pacific decadal oscillation (TPDO).Our analysis suggests that TPDO is closely correlated with the Pacific decadal oscillation (PDO) in the surface sea temperature (SST).The correlation coefficient between the indices of TPDO and PDO is +0.81 and reaches a maximum of +0.84 when TPDO lags behind PDO by 2 months.Therefore,a change of TPDO is likely related to the variation of PDO.The long-term change in TPDO best explains decadal warming in the tropical eastern Pacific SST and implies potential impact on the weakening of East Asian summer monsoons after the late 1970s.展开更多
This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern floo...This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern flood and Northern drought(SFND)"summer rainfall pattern over East China.The mechanism behind this contribution is also discussed.展开更多
Quantitative identification of long-term changes in the abundance of Japanese anchovy(Engraulis japonicus)in the Yellow Sea is particularly important for understanding evolutionary processes of the Yellow Sea ecosyste...Quantitative identification of long-term changes in the abundance of Japanese anchovy(Engraulis japonicus)in the Yellow Sea is particularly important for understanding evolutionary processes of the Yellow Sea ecosystem.Unfortunately,the driving mechanisms of climate variability on the anchovy are still unclear due to the lack of long-term observational data.In this study,we used the fish scale deposition rate in the central Yellow Sea to reconstruct the time series of the anchovy stock over the past 400 a.On this basis,we further explored the impacts of the Pacific Decadal Oscillation(PDO)on the anchovy.Our results show that the anchovy stock is positively correlated with the PDO on a decadal time scale.In addition,anchovy abundance was relatively high during1620–1860 AD(the Little Ice Age,LIA),though in a state of constant fluctuation;anchovy abundance maintained at a relatively low level after~1860 AD.In particular,followed by overfishing since the 1980 s,the anchovy stock has declined sharply.Based on these findings,we infer that fluctuations of the anchovy stock may be regulated by basin-scale“atmosphere–ocean”interactions.Nevertheless,the role of overfishing should not be ignored.展开更多
Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemisph...Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemispheric part of South-East Asia is demonstrated. The detection of regime shifts is made possible by using a new comprehensive dataset of daily precipitation records (South-East Asian Climate Assessment and Dataset) and applying a novel Bayesian approach for regime shift detection. After the detected regime shift event in the mid-1970s, significant changes in precipitation distribution occurred in the Northern Hemispheric regions—Indochina Peninsula and the Philippines. More specifically, dry days became up to 10% more frequent in some regions. However, no precipitation regime shift is detected in Southern Hemisphere regions—Java and Northern Australia, were the number of observed dry days increased gradually.展开更多
Based on the study of the cold phase of the Pacific Decade Oscillation, pandemic influenza is related to climate. The relation of low temperature, Pacific Decade Oscillation, strongest earthquake, Influenza, hurricane...Based on the study of the cold phase of the Pacific Decade Oscillation, pandemic influenza is related to climate. The relation of low temperature, Pacific Decade Oscillation, strongest earthquake, Influenza, hurricane and E1 Nino is researched in this study. In the cold period of Pacific Decade Oscillation, the strongest earthquake, hurricane with La Ni'na, Pandemic Influenza with E1 Nino will occur stronger and stronger. From 1950 to 1976, the strongest dust-storm is connected with Pandemic Influenza one by one. So, dust-storm is one of factors to spread pandemic influenza viruses.展开更多
Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal ...Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal (50 70-yr) modes. Joint propagating patterns of sea surface temperature (SST) and sea level pressure (SLP) anomalies in the North Pacific for the two modes are revealed by using the techniques of multi-channel singular spectrum analysis (MSSA) and linear regression analysis with the global sea surface temperature (GISST) data and the northern hemispheric SLP data for the common period 1903 1998. Significant differences in spatio-temporal structures are found between the two modes. For the bidecadal mode, SST anomalies originating from the Gulf of Alaska appear to slowly spread southwestward, inducing a reversal of early SST anomalies in the central North Pacific. Due to further westward spreading, the SST variation of the central North Pacific leads that of the Kuroshio-Oyashio Extension (KOE) region by approximately 4 to 5 years. Concomitantly, SLP anomalies spread over most parts of the North Pacific during the mature phase and then change into an NPO(North Pacific Oscillation)-like pattern during the transition phase. For the pentadecadal mode, SST anomalies develop in the southeast tropical Pacific and propagate along the North American coast to the mid-latitudes; meanwhile, SST anomalies with the same polarity in the western tropical Pacific expand northward to Kuroshio and its extension region; both merge into the central North Pacific reversing the sign of early SST anomalies there. Accompanying SLP anomalies are characterized by an NPO-like pattern during the mature phase while they are dominant over the North Pacific during the transitional phase. The bidecadal and pentadecadal modes have different propagating patterns, suggesting that the two interdecadal modes may arise from different physical mechanisms.展开更多
The Pacific decadal and interdecadal oscillation (PDO) has been extensively explored in recent decades because of its profound impact on global climate systems. It is a long-lived ENSO-like pattern of Pacific climate ...The Pacific decadal and interdecadal oscillation (PDO) has been extensively explored in recent decades because of its profound impact on global climate systems. It is a long-lived ENSO-like pattern of Pacific climate variability with a period of 10-30 years. The general picture is that the anomalously warm (cool) SSTs in the central North Pacific are always accompanied by the anomalously cool (warm) SSTs along the west coast of America and in the central east tropical Pacific with comparable amplitude. In general, there are two classes of opinions on the origin of this low-frequency climate variability, one thinking that it results from deterministically coupled modes of the Pacific ocean-atmosphere system, and the other, from stochastic atmospheric forcing. The deterministic origin emphasizes that the internal physical processes in an air-sea system can provide a positive feedback mechanism to amplify an initial perturbation, and a negative feedback mechanism to reverse the phase of oscillation. The dynamic evolution of ocean circulation determines the timescale of the oscillation. The stochastic origin, however, emphasizes that because the atmospheric activities can be thought as having no preferred timescale and are associated with an essentially white noise spectrum, tne ocean response can manifest a red peak in a certain low frequency range with a decadal to interdecadal timescale. In this paper, the authors try to systematically understand the state of the art of observational, theoretical and numerical studies on the PDO and hope to provide a useful background reference for current research.展开更多
In this study, the impacts of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) on the western Pacific warm pool (WPWP) were investigated. Our results show that the WPWP is li...In this study, the impacts of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) on the western Pacific warm pool (WPWP) were investigated. Our results show that the WPWP is linked with the PDO and the AMO at multiple time scales. On the seasonal time scales, the WPWP and the PDO/AMO reinforce each other, while at decadal time scales the forcing roles of the PDO and the AMO dominate. Notably, a positive PDO tends to enlarge the WPWP at both seasonal and decadal time scales, while a positive AMO tends to reduce the WPWP at decadal time scales. Furthermore, the decadal variability of the WPWP can be well predicted based on the PDO and AMO.展开更多
The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under ...The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under weak global warming. Observational data were derived from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST) and coupled model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Changes in PDO and AMV were examined using four models (bcc-csml-1, CCSM4, IPSL-CM5A-LR, and MPI- ESM-LR) with long weak global warming scenarios (RCP2.6). These models captured the two low-frequency modes in both pre-industrial run and RCP2.6 run. Under weak global warming, the time scales of PDO and AMV significantly decreased while the amplitude only slightly decreased. Interestingly, the standard deviation of the North Pacific sea surface temperature anomaly (SSTA) decreased only in decadal time scale, and that of the North Atlantic SSTA decreased both in interannual and decadal time scales. The coupled system consists of a slow ocean component, which has a decadal time scale, and a fast atmospheric component, which is calculated by subtracting the decadal from the total. Results suggest that under global warming, PDO change is dominated by ocean dynamics, and AMV change is dominated by ocean dynamics and stochastic atmosphere forcing.展开更多
This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Glob...This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.展开更多
The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean ...The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean products. The results indicate that the maximum salinity of NPTW experiences signifi cant quasi-decadal variations, having maxima around 1979, 1987, 1995, 2004, and 2012, while minima around 1974, 1983, 1991, 1999, and 2008 during the period of interest. The NPTW area also shows similar quasidecadal variation, expanding/shrinking as its maximum salinity increases/decreases at the 137°E section. These variations are induced mainly by changes in the mixed layer salinity in the source region and largescale circulation in the northwestern tropical Pacific Ocean, both of which are related to the Pacific Decadal Oscillation. The underlying processes at work are further confi rmed through conducting the subsurface salinity budget analysis. Besides, short-term processes are also at work through nonlinear interactions, especially after 2000.展开更多
Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variatio...Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variations are related to a large-scale circulation shift over the Eurasian Continent. The effects of underlying sea ice and sea surface temperature(SST) anomalies on the Ural PAE and the related atmospheric circulation were explored by Atmospheric Model Intercomparison Project(AMIP) experiments from the Coupled Model Intercomparison Project Phase 6 and by sensitivity experiments using the Atmospheric General Circulation Model(AGCM). The AMIP experiment results suggest that the underlying sea ice and SST anomalies play important roles. The individual contributions of sea ice loss in the Barents-Kara Seas and the SST anomalies linked to the phase transition of the Pacific Decadal Oscillation(PDO) and Atlantic Multidecadal Oscillation(AMO) are further investigated by AGCM sensitivity experiments isolating the respective forcings.The sea ice decline in Barents-Kara Seas triggers an atmospheric wave train over the Eurasian mid-to-high latitudes with positive anomalies over the Urals, favoring the occurrence of Ural PAEs. The shift in the PDO to its negative phase triggers a wave train propagating downstream from the North Pacific. One positive anomaly lobe of the wave train is located over the Ural Mountains and increases the PAE there. The negative-to-positive transition of the AMO phase since the late-1990s causes positive 500-h Pa height anomalies south of the Ural Mountains, which promote a southward shift of Ural PAE.展开更多
The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relat...The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.展开更多
基金supported by the National Key R&D Program of China (Grant No.2017YFA0604201)the National Natural Science Foundation of China (Grant Nos.41576019,41606027 and 41706028)the China Postdoctoral Science Foundation (Grant No.2015M571095)
文摘Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5), the El Ni o(EN) and La Ni a(LN) events in positive and negative Pacific Decadal Oscillation(PDO) phases are examined. In the observational data, with EN(LN) events the positive(negative) SST anomaly in the equatorial eastern Pacific is much stronger in positive(negative) PDO phases than in negative(positive) phases. Meanwhile,the models cannot reasonably reproduce this difference. Besides, the modulation of ENSO frequency asymmetry by the PDO is explored. Results show that, in the observational data, EN is 300% more(58% less) frequent than LN in positive(negative)PDO phases, which is significant at the 99% confidence level using the Monte Carlo test. Most of the CMIP5 models exhibit results that are consistent with the observational data.
基金Supported by the National Natural Science Foundation of China(No.41376028)the Knowledge Innovation Program of Chinese Academy of Sciences(CAS)(No.Y22114101Q)+2 种基金the National Basic Research Program of China(973 Program)(No.2013CB956202)the"100-Talent Project"of Chinese Academy of Sciences,China(No.Y32109101L)the Special Funds of CAS(No.XDAl 1040205)
文摘The rate of regional sea level rise (SLR) provides important information about the impact of human activities on climate change. However, accurate estimation of regional SLR can be severely affected by sea surface height (SSH) change caused by the Pacific Decadal Oscillation (PDO-SSH). Here, the PDO- SSH signal is extracted from satellite altimeter data by multi-variable linear regression, and regional SLR in the altimeter era is calculated, before and after removing that signal. The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific, with the strongest signal confined to the tropical and North Pacific. Over the past 20 years, the PDO-SSH accounts for about 30%/-400% of altimeter-observed SLR in the regions 8° 15°N, 130°-160°E and 30°-40°N, 170°-220°E. Along the coast &North America, the PDO-SSH signal dramatically offsets the coastal SLR, as the sea level trends change sign from falling to rising.
基金supported by the National Natural Science Foundation of China(NSFC)Creative Group Project(Grant No.41221063)Major Research Project(Grant No.2013CB956200)
文摘The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110201)the National Natural Science Foundation of China(Grant No.41475052)
文摘This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1506004)the Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA19070404 and QYZDY-SSW-DQC018)+3 种基金the Natural Science Foundation of China (Grant Nos. 41705065, 41876020 and 41730963)the SOA Program on Global Change and Air-Sea Interactions (Grant No. GASI-IPOVAI-03)the Foundation of Sichuan Education Department (Grant No. 18ZB0122)the Open Foundation of the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (Grant No. PAEKL-2017-Y6)
文摘Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni-o-Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900-2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Ni-o (La Ni-a) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO-BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Ni-o (La Ni-a) event exhibiting significant positive (negative) SSTAs over the tropical central-eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Ni-o-related (La Ni-a-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.
基金supported by the National Key R&D Program of China[grant number 2017YFA0603802]the National Natural Science Foundation of China[grant numbers 41661144005,41320104007,and 41575086]the CAS-PKU(Chinese Academy of Sciences-Peking University) Joint Research Program
文摘The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compared with observations, most simulations successfully simulate the observed PDO pattern and its teleconnections to the SSTs in the tropical and southern Pacific. BNU-ESM, CanESM2, CCSM4, CESM 1 -FASTCHEM, FGOALS-g2, GFDL CM3, MIROCS, and NorESM 1 -M show better performance. Compared with the temporal phases of the observed PDO in the twentieth century, only five simulations -- from CNRM^CMS, CSIRO Mk3o6.0, HadCM3, and IPSL-CMSA-LR -- simulate an evolution of the PDO similar to that derived from observation, which suggests that current coupled models can barely reproduce the observed phase shifting of the PDO. To capture characteristics of the observed PDO in the twentieth century, a requirement is that all the relevant external forcings are included in the models. How to add realistic oceanic initial states into the model may be another key point.
基金supported by the National Key Research and Development Program of China (Grant Nos.2016YFA0602501 and 2018YFA0606004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA20040301 and XDA20020201)。
文摘Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO.
基金The National Natural Science Foundation ofChina (Grant Nos. 90711003 and 40921003)Chinese Coordinated Observation and Prediction of climate System (ChineseCOPES) program (Grant No. GYHY200706005) jointly supportedthis study
文摘This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic analysis and Empirical Orthogonal Function (EOF) methods.Significant cooling trends in the SOT in the tropical western Pacific were found over this 60-year period.The first EOF of the SOT in tropical Pacific displays an ENSO-like zonal dipole pattern on decadal time scale,and we considered this pattern in subsurface ocean temperature the tropical Pacific decadal oscillation (TPDO).Our analysis suggests that TPDO is closely correlated with the Pacific decadal oscillation (PDO) in the surface sea temperature (SST).The correlation coefficient between the indices of TPDO and PDO is +0.81 and reaches a maximum of +0.84 when TPDO lags behind PDO by 2 months.Therefore,a change of TPDO is likely related to the variation of PDO.The long-term change in TPDO best explains decadal warming in the tropical eastern Pacific SST and implies potential impact on the weakening of East Asian summer monsoons after the late 1970s.
基金supported by the National Basic Research Program of China(Grant No.2009CB421401)the Research Council of Norway through the DecCen project(Exploring Decadal to Century Scale Variability and Changes in the East Asian Climate during the last Millennium)
文摘This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern flood and Northern drought(SFND)"summer rainfall pattern over East China.The mechanism behind this contribution is also discussed.
基金The National Natural Science Foundation of China under contract No.31600397。
文摘Quantitative identification of long-term changes in the abundance of Japanese anchovy(Engraulis japonicus)in the Yellow Sea is particularly important for understanding evolutionary processes of the Yellow Sea ecosystem.Unfortunately,the driving mechanisms of climate variability on the anchovy are still unclear due to the lack of long-term observational data.In this study,we used the fish scale deposition rate in the central Yellow Sea to reconstruct the time series of the anchovy stock over the past 400 a.On this basis,we further explored the impacts of the Pacific Decadal Oscillation(PDO)on the anchovy.Our results show that the anchovy stock is positively correlated with the PDO on a decadal time scale.In addition,anchovy abundance was relatively high during1620–1860 AD(the Little Ice Age,LIA),though in a state of constant fluctuation;anchovy abundance maintained at a relatively low level after~1860 AD.In particular,followed by overfishing since the 1980 s,the anchovy stock has declined sharply.Based on these findings,we infer that fluctuations of the anchovy stock may be regulated by basin-scale“atmosphere–ocean”interactions.Nevertheless,the role of overfishing should not be ignored.
文摘Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemispheric part of South-East Asia is demonstrated. The detection of regime shifts is made possible by using a new comprehensive dataset of daily precipitation records (South-East Asian Climate Assessment and Dataset) and applying a novel Bayesian approach for regime shift detection. After the detected regime shift event in the mid-1970s, significant changes in precipitation distribution occurred in the Northern Hemispheric regions—Indochina Peninsula and the Philippines. More specifically, dry days became up to 10% more frequent in some regions. However, no precipitation regime shift is detected in Southern Hemisphere regions—Java and Northern Australia, were the number of observed dry days increased gradually.
文摘Based on the study of the cold phase of the Pacific Decade Oscillation, pandemic influenza is related to climate. The relation of low temperature, Pacific Decade Oscillation, strongest earthquake, Influenza, hurricane and E1 Nino is researched in this study. In the cold period of Pacific Decade Oscillation, the strongest earthquake, hurricane with La Ni'na, Pandemic Influenza with E1 Nino will occur stronger and stronger. From 1950 to 1976, the strongest dust-storm is connected with Pandemic Influenza one by one. So, dust-storm is one of factors to spread pandemic influenza viruses.
基金supported by the National Natural Science Foundation of China under the grants No.40233028 and No.40075017.
文摘Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal (50 70-yr) modes. Joint propagating patterns of sea surface temperature (SST) and sea level pressure (SLP) anomalies in the North Pacific for the two modes are revealed by using the techniques of multi-channel singular spectrum analysis (MSSA) and linear regression analysis with the global sea surface temperature (GISST) data and the northern hemispheric SLP data for the common period 1903 1998. Significant differences in spatio-temporal structures are found between the two modes. For the bidecadal mode, SST anomalies originating from the Gulf of Alaska appear to slowly spread southwestward, inducing a reversal of early SST anomalies in the central North Pacific. Due to further westward spreading, the SST variation of the central North Pacific leads that of the Kuroshio-Oyashio Extension (KOE) region by approximately 4 to 5 years. Concomitantly, SLP anomalies spread over most parts of the North Pacific during the mature phase and then change into an NPO(North Pacific Oscillation)-like pattern during the transition phase. For the pentadecadal mode, SST anomalies develop in the southeast tropical Pacific and propagate along the North American coast to the mid-latitudes; meanwhile, SST anomalies with the same polarity in the western tropical Pacific expand northward to Kuroshio and its extension region; both merge into the central North Pacific reversing the sign of early SST anomalies there. Accompanying SLP anomalies are characterized by an NPO-like pattern during the mature phase while they are dominant over the North Pacific during the transitional phase. The bidecadal and pentadecadal modes have different propagating patterns, suggesting that the two interdecadal modes may arise from different physical mechanisms.
基金This paper is supported by the National Natural Science Foundation of China under Grant No. 40005006, the Knowledge Innovation Key Project of the Chinese Academy of Sciences in the Resource Environment Field (No. KZCX2-203), and the National Key Programm
文摘The Pacific decadal and interdecadal oscillation (PDO) has been extensively explored in recent decades because of its profound impact on global climate systems. It is a long-lived ENSO-like pattern of Pacific climate variability with a period of 10-30 years. The general picture is that the anomalously warm (cool) SSTs in the central North Pacific are always accompanied by the anomalously cool (warm) SSTs along the west coast of America and in the central east tropical Pacific with comparable amplitude. In general, there are two classes of opinions on the origin of this low-frequency climate variability, one thinking that it results from deterministically coupled modes of the Pacific ocean-atmosphere system, and the other, from stochastic atmospheric forcing. The deterministic origin emphasizes that the internal physical processes in an air-sea system can provide a positive feedback mechanism to amplify an initial perturbation, and a negative feedback mechanism to reverse the phase of oscillation. The dynamic evolution of ocean circulation determines the timescale of the oscillation. The stochastic origin, however, emphasizes that because the atmospheric activities can be thought as having no preferred timescale and are associated with an essentially white noise spectrum, tne ocean response can manifest a red peak in a certain low frequency range with a decadal to interdecadal timescale. In this paper, the authors try to systematically understand the state of the art of observational, theoretical and numerical studies on the PDO and hope to provide a useful background reference for current research.
基金the National Natural Science Foundation of China (NSFC)major project (Grant No. 40890155)NSFC Distin-guished Young Investigator Project (Grant No. 40788002)
文摘In this study, the impacts of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) on the western Pacific warm pool (WPWP) were investigated. Our results show that the WPWP is linked with the PDO and the AMO at multiple time scales. On the seasonal time scales, the WPWP and the PDO/AMO reinforce each other, while at decadal time scales the forcing roles of the PDO and the AMO dominate. Notably, a positive PDO tends to enlarge the WPWP at both seasonal and decadal time scales, while a positive AMO tends to reduce the WPWP at decadal time scales. Furthermore, the decadal variability of the WPWP can be well predicted based on the PDO and AMO.
文摘The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under weak global warming. Observational data were derived from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST) and coupled model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Changes in PDO and AMV were examined using four models (bcc-csml-1, CCSM4, IPSL-CM5A-LR, and MPI- ESM-LR) with long weak global warming scenarios (RCP2.6). These models captured the two low-frequency modes in both pre-industrial run and RCP2.6 run. Under weak global warming, the time scales of PDO and AMV significantly decreased while the amplitude only slightly decreased. Interestingly, the standard deviation of the North Pacific sea surface temperature anomaly (SSTA) decreased only in decadal time scale, and that of the North Atlantic SSTA decreased both in interannual and decadal time scales. The coupled system consists of a slow ocean component, which has a decadal time scale, and a fast atmospheric component, which is calculated by subtracting the decadal from the total. Results suggest that under global warming, PDO change is dominated by ocean dynamics, and AMV change is dominated by ocean dynamics and stochastic atmosphere forcing.
基金supported by the National Basic Research Program of China (973 program,Grant No.2010CB950502)the National Natural Science Foundation of China (Grant Nos.40975065 and 40821092)
文摘This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.
基金Supported by the National Natural Science Foundation of China(Nos.41506008,41606107,41476002,41776012)ZHAI F.G.is also supported by the Shandong Provincial Natural Science Foundation(No.ZR2015DQ006)China Postdoctoral Science Foundation(No.2015M570609)
文摘The decadal variations of the North Pacifi c Tropical Water (NPTW) at 137°E in the western North Pacific Ocean are investigated based on the repeated hydrographic observations along with two global gridded ocean products. The results indicate that the maximum salinity of NPTW experiences signifi cant quasi-decadal variations, having maxima around 1979, 1987, 1995, 2004, and 2012, while minima around 1974, 1983, 1991, 1999, and 2008 during the period of interest. The NPTW area also shows similar quasidecadal variation, expanding/shrinking as its maximum salinity increases/decreases at the 137°E section. These variations are induced mainly by changes in the mixed layer salinity in the source region and largescale circulation in the northwestern tropical Pacific Ocean, both of which are related to the Pacific Decadal Oscillation. The underlying processes at work are further confi rmed through conducting the subsurface salinity budget analysis. Besides, short-term processes are also at work through nonlinear interactions, especially after 2000.
基金jointly supported by the National Key Research and Development Program of China (Grant No.2018YFA0606403)the National Natural Science Foundation of China (Grant No.41790473)the Beijing Natural Science Foundation (8234068)。
文摘Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variations are related to a large-scale circulation shift over the Eurasian Continent. The effects of underlying sea ice and sea surface temperature(SST) anomalies on the Ural PAE and the related atmospheric circulation were explored by Atmospheric Model Intercomparison Project(AMIP) experiments from the Coupled Model Intercomparison Project Phase 6 and by sensitivity experiments using the Atmospheric General Circulation Model(AGCM). The AMIP experiment results suggest that the underlying sea ice and SST anomalies play important roles. The individual contributions of sea ice loss in the Barents-Kara Seas and the SST anomalies linked to the phase transition of the Pacific Decadal Oscillation(PDO) and Atlantic Multidecadal Oscillation(AMO) are further investigated by AGCM sensitivity experiments isolating the respective forcings.The sea ice decline in Barents-Kara Seas triggers an atmospheric wave train over the Eurasian mid-to-high latitudes with positive anomalies over the Urals, favoring the occurrence of Ural PAEs. The shift in the PDO to its negative phase triggers a wave train propagating downstream from the North Pacific. One positive anomaly lobe of the wave train is located over the Ural Mountains and increases the PAE there. The negative-to-positive transition of the AMO phase since the late-1990s causes positive 500-h Pa height anomalies south of the Ural Mountains, which promote a southward shift of Ural PAE.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.