The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,t...The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,to reveal the relationship of associated microbiota to the fitness of oysters,temporal dynamics of microbiota in the gill,hemolymph,and hepatopancreas of C.gigas during April 2018-January 2019 were investigated by 16 S rRNA gene sequencing.The microbiota in C.gigas exhibited tissue heterogeneity,of which Spirochaetaceae was dominant in the gill and hemolymph while Mycoplasmataceae enriched in the hepatopancreas.Co-occurrence network demonstrated that the gill microbiota exhibited higher inter-taxon connectivity while the hemolymph microbiota had more modules.The richness(Chao 1 index)and diversity(Shannon index)of microbial community in each tissue showed no significant seasonal variations,except for the hepatopancreas having a higher richness in the autumn.Similarly,beta diversity analysis indicated a relatively stable microbiota in each tissue during the sampling period,showing relative abundance of the dominant taxa exhibiting temporal dynamics.Results indicate that the microbial community in C.gigas showed a tissue-specific stability with temporal dynamics in the composition,which might be essential for the tissue functioning and environmental adaption in oysters.This work provides a baseline microbiota in C.gigas and is helpful for the understanding of host-microbiota interaction in oysters.展开更多
Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improv...Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improved strain with fast-growing trait.However,little is known about the metabolic signatures of the fast-growing trait.In the present study,the non-targeted metabolomics was performed to analyze the metabolic signatures of adductor muscle tissue in one-year old Pacific oysters from fast-growing strain and the wild population.A total of 7767 and 10174 valid peaks were extracted and quantified in ESI^(+)and ESI^(−)modes,resulting in 399 and 381 annotated metabolites,respectively.PCA and OPLS-DA revealed that considerable separation among samples from fastgrowing strain and wild population,suggesting the differences in metabolic signatures.Meanwhile,81 significantly different metabolites(SDMs)were identified in the comparisons between fast-growing strain and wild population,based on the strict thresholds.It was found that there were highly correlation and conserved coordination among these SDMs.KEGG enrichment analysis indicated that the SDMs were tightly related to pantothenate and CoA biosynthesis,steroid hormone biosynthesis,riboflavin metabolism,and arginine and proline metabolism.Of them,the CoA biosynthesis and metabolism,affected by pantetheine and pantothenic acid,might be important for the growth of Pacific oysters under artificial selective breeding.The study provides the comprehensive views of metabolic signatures in response to artificially selective breeding,and is helpful to better understand the molecular mechanism of fastgrowing traits in Pacific oysters.展开更多
Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximatel...Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.展开更多
Abstract Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding pro- grams in China were examined at ten polymorphic microsatellite loci to assess the lev...Abstract Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding pro- grams in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a rela- tively large number ofbroodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided im- portant information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.展开更多
Mass selection for fast growth was conducted in three Pacific oyster (Crassostrea gigas) stocks from China, Japan and Korea using previously established lines (CS1, JS1, and KS1). To determine whether continuous progr...Mass selection for fast growth was conducted in three Pacific oyster (Crassostrea gigas) stocks from China, Japan and Korea using previously established lines (CS1, JS1, and KS1). To determine whether continuous progress can be achieved by selection for growth, the progeny of three second-generation Pacific oyster lines was selected for shell height and evaluated via a 400-day farming experiment. When harvested at the end of the experiment, the selected crosses of CS2, JS2, and KS2 lines grew by 9.2%, 10.2% and 9.6% larger than the control crosses, respectively. During grow-out stage, the genetic gain of three selected lines was (10.2 ± 1.4)%, (10.4 ± 0.3)%, and (8.4 ± 1.6)%, respectively; and the corresponding realized heritability was 0.457 ± 0.143, 0.312 ± 0.071 and 0.332 ± 0.009, respectively. These results indicated that the selection for fast growth achieved steady progress in the second generation of oyster. Our work provides supportive evidence for the continuity of the Pacific oyster selective breeding program.展开更多
The glycogen content and the activities of two key enzymes in glycogen metabolism, glycogen phosphorylase and gly- cogen synthetase, in the gonad of diploid and triploid Pacific oysters (Crassostrea gigas) were compar...The glycogen content and the activities of two key enzymes in glycogen metabolism, glycogen phosphorylase and gly- cogen synthetase, in the gonad of diploid and triploid Pacific oysters (Crassostrea gigas) were compared during maturation. The glycogen content in the gonad of diploids decreased with gametogenesis (by 85.7%), but the glycogen content in the gonad of trip- loids did not vary significantly. Activity of glycogen phosphorylase (GP) in the gonad of diploids decreased with gametogenesis (by 55.5%), while GP activity of triploids did not vary significantly during maturation. Activity of glycogen synthetase (GS) in the gonad of diploids increased slightly with gametogenesis, reaching a peak in June. Activity of GS declined sharply from June to July, which might be due to gonad spawning. GS activity of triploid oysters in spawning time (July and August) was significantly higher than that in other months, which might be explained with a ‘compensating’ mechanism for the higher glycogen content in triploids.展开更多
Microsatellites are a ubiquitous component of the eukaryote genome and constitute one of the most popular sources of molecular markers for genetic studies. However, no data are currently available regarding microsatel...Microsatellites are a ubiquitous component of the eukaryote genome and constitute one of the most popular sources of molecular markers for genetic studies. However, no data are currently available regarding microsatellites across the entire genome in oysters, despite their importance to the aquaculture industry. We present the fi rst genome-wide investigation of microsatellites in the Pacifi c oyster Crassostrea gigas by analysis of the complete genome, resequencing, and expression data. The Pacifi c oyster genome is rich in microsatellites. A total of 604 653 repeats were identifi ed, in average of one locus per 815 base pairs(bp). A total of 12 836 genes had coding repeats, and 7 332 were expressed normally, including genes with a wide range of molecular functions. Compared with 20 different species of animals, microsatellites in the oyster genome typically exhibited 1) an intermediate overall frequency; 2) relatively uniform contents of(A)n and(C)n repeats and abundant long(C)n repeats(≥24 bp); 3) large average length of(AG)n repeats; and 4) scarcity of trinucleotide repeats. The microsatellite-fl anking regions exhibited a high degree of polymorphism with a heterozygosity rate of around 2.0%, but there was no correlation between heterozygosity and microsatellite abundance. A total of 19 462 polymorphic microsatellites were discovered, and dinucleotide repeats were the most active, with over 26% of loci found to harbor allelic variations. In all, 7 451 loci with high potential for marker development were identifi ed. Better knowledge of the microsatellites in the oyster genome will provide information for the future design of a wide range of molecular markers and contribute to further advancements in the fi eld of oyster genetics, particularly for molecular-based selection and breeding.展开更多
Integrated Multi-Trophic Aquaculture(IMTA)is an effective method for sustainable aquaculture as species from different trophic levels could reduce negative effects from fed species in the environment.A proper proporti...Integrated Multi-Trophic Aquaculture(IMTA)is an effective method for sustainable aquaculture as species from different trophic levels could reduce negative effects from fed species in the environment.A proper proportion of different trophic species in an IMTA system could improve the aquaculture production and environmental sustainability.At present,research on the proper proportions for farming species is scarce.We investigated the effects of IMTA modes of oyster(Crassostrea gigas)and kelp(Saccharina japonica)in different weight ratios on water quality and carbonate system in a closed enclosure experiment for three days in the Sanggou Bay in Shandong Province,China,in December 2017.Nine collocation modes in oyster:kelp weight ratio were tested showing as 24:3,24:2,24:1,16:3,16:2,16:1,8:3,8:2,and 8:1.The water parameters were determined at 17:00 on Day 1(D1),and 6:00 and 17:00 on Days 2(D2)and 3(D3).As two-way ANOVA showed,all increased parameters(dissolved oxygen(DO),pH,chl a,the carbonate system and pCO2)were significantly related to oyster-kelp modes,and interaction between modes and time were also significant(P<0.05).On the 3th day,the 8:3 mode was the highest in DO,pH,chl a,CO32-(P<0.05),and dissolved inorganic carbon(DIC),HCO3-,CO2,and pCO2 were the lowest(P<0.05).According to previous references and the results of this study,the appropriate oyster:kelp proportion at the beginning of winter is from 8:2 to 8:3.The results of this study may help government to optimize the aquaculture structure of Sanggou Bay.展开更多
In this study, a cytochemical method and transmission electron microscopy was used to examine acid phosphatase activities of yolk granules throughout the early developmental stages of the Pacific oyster Crassostrea gi...In this study, a cytochemical method and transmission electron microscopy was used to examine acid phosphatase activities of yolk granules throughout the early developmental stages of the Pacific oyster Crassostrea gigas. This study aimed to investigate the dynamic change of yolk granule acid phosphatase, and the mechanisms underlying its involvement in yolk degradation during the early developmental stages of molluscs. Three types of yolk granules (YGI, YGⅡ, and YGⅢ) that differed in electron density and acid phosphatase reaction were identified in early cleavage, morula, blastula, gastrula, trochophore, and veliger stages. The morphological heterogeneities of the yolk granules were related to acid phosphatase activity and degrees of yolk degradation, indicating the association of acid phosphatase with yolk degradation in embryos and larvae of molluscs. Fusion of yolk granules was observed during embryogenesis and larval development of C. gigas. The fusion of YGI (free of acid phosphatase reaction) with YGII (rich in acid phosphatase reaction) could be the way by which yolk degradation is triggered.展开更多
A muhispecies model for shellfish polycuhure in the Sanggou Bay in China used for large-scale long-line cultivation of the Chinese scallop Chlamysfarreri, the Pacific oyster Crassostrea gigas and the kelp Laminaria ja...A muhispecies model for shellfish polycuhure in the Sanggou Bay in China used for large-scale long-line cultivation of the Chinese scallop Chlamysfarreri, the Pacific oyster Crassostrea gigas and the kelp Laminaria japonica is presented. The model includes key physical processes which are the transports of matter at the system boundary, and the main biological process that is the primary production and nutrients release from the bottom. By the model, the seasonal fluctuations of phytoplankton biomass and dissolved inorganic nitrogen(DIN) in 1994 are simulated. Furthermore, if the kelp culture scale is kept constant and the Chinese scallop and the Pacific oyster culture scales are adjusted, virtual shellfish farms are funded and responses of phytoplankton to the largescale shellfish culture are simulated. According to these simulated results, the room limitation, and the hypothesis that shellfish will not grow well if the phytoplankton biomass is less than 8.2 mg/m^3 , the expandable multiple of scallop culture k and that of oyster culture y are determined as k = -0.276 5y +4.690 5 and 0.133 3k +0.006 6y≤0.667 5, where, k ( or y) is equal to 1, the culture scale of scallop ( or oyster) is 8.8 x 109 individuals (or 66 ha, with a density of 59 ind./m^2 ), and the kelp culture scale is 3 300 ha with a density of 12 ind./m^2.展开更多
基金Supported by the National Natural Science Foundation of China(No.41961124009)the Earmarked Fund for China Agriculture Research System(No.CARS-49)+1 种基金the fund for Outstanding Talents and Innovative Team of Agricultural Scientific Research from MARA,the Innovation Team of Aquaculture Environment Safety from Liaoning Province(No.LT202009)the Dalian High Level Talent Innovation Support Program(No.2022RG14)。
文摘The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,to reveal the relationship of associated microbiota to the fitness of oysters,temporal dynamics of microbiota in the gill,hemolymph,and hepatopancreas of C.gigas during April 2018-January 2019 were investigated by 16 S rRNA gene sequencing.The microbiota in C.gigas exhibited tissue heterogeneity,of which Spirochaetaceae was dominant in the gill and hemolymph while Mycoplasmataceae enriched in the hepatopancreas.Co-occurrence network demonstrated that the gill microbiota exhibited higher inter-taxon connectivity while the hemolymph microbiota had more modules.The richness(Chao 1 index)and diversity(Shannon index)of microbial community in each tissue showed no significant seasonal variations,except for the hepatopancreas having a higher richness in the autumn.Similarly,beta diversity analysis indicated a relatively stable microbiota in each tissue during the sampling period,showing relative abundance of the dominant taxa exhibiting temporal dynamics.Results indicate that the microbial community in C.gigas showed a tissue-specific stability with temporal dynamics in the composition,which might be essential for the tissue functioning and environmental adaption in oysters.This work provides a baseline microbiota in C.gigas and is helpful for the understanding of host-microbiota interaction in oysters.
基金supported by grants from the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province(Nos.2021ZLGX03 and 2022LZGCQY010)the China Agriculture Research System Project(No.CARS-49).
文摘Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improved strain with fast-growing trait.However,little is known about the metabolic signatures of the fast-growing trait.In the present study,the non-targeted metabolomics was performed to analyze the metabolic signatures of adductor muscle tissue in one-year old Pacific oysters from fast-growing strain and the wild population.A total of 7767 and 10174 valid peaks were extracted and quantified in ESI^(+)and ESI^(−)modes,resulting in 399 and 381 annotated metabolites,respectively.PCA and OPLS-DA revealed that considerable separation among samples from fastgrowing strain and wild population,suggesting the differences in metabolic signatures.Meanwhile,81 significantly different metabolites(SDMs)were identified in the comparisons between fast-growing strain and wild population,based on the strict thresholds.It was found that there were highly correlation and conserved coordination among these SDMs.KEGG enrichment analysis indicated that the SDMs were tightly related to pantothenate and CoA biosynthesis,steroid hormone biosynthesis,riboflavin metabolism,and arginine and proline metabolism.Of them,the CoA biosynthesis and metabolism,affected by pantetheine and pantothenic acid,might be important for the growth of Pacific oysters under artificial selective breeding.The study provides the comprehensive views of metabolic signatures in response to artificially selective breeding,and is helpful to better understand the molecular mechanism of fastgrowing traits in Pacific oysters.
基金Supported by the Shandong Province Key R&D Program Project(No.2021LZGC029)the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY010813)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA24030105)the Qingdao Key Technology and Industrialization Demonstration Project(No.22-3-3-hygg-2-hy)the Earmarked Fund for China Agriculture Research System(No.CARS-49)。
文摘Glycogen,amino acids,fatty acids,and other nutrient components affect the flavor and nutritional quality of oysters.Methods based on near-infrared reflectance spectroscopy(NIRS)were developed to rapidly and proximately determine the nutrient content of the Pacific oyster Crassostreagigas.Samples of C.gigas from 19 costal sites were freeze-dried,ground,and scanned for spectral data collection using a Fourier transform NIR spectrometer(Thermo Fisher Scientific).NIRS models of glycogen and other nutrients were established using partial least squares,multiplication scattering correction first-order derivation,and Norris smoothing.The R_(C) values of the glycogen,fatty acids,amino acids,and taurine NIRS models were 0.9678,0.9312,0.9132,and 0.8928,respectively,and the residual prediction deviation(RPD)values of these components were 3.15,2.16,3.11,and 1.59,respectively,indicating a high correlation between the predicted and observed values,and that the models can be used in practice.The models were used to evaluate the nutrient compositions of 1278 oyster samples.Glycogen content was found to be positively correlated with fatty acids and negatively correlated with amino acids.The glycogen,amino acid,and taurine levels of C.gigas cultured in the subtidal and intertidal zones were also significantly different.This study suggests that C.gigas NIRS models can be a cost-effective alternative to traditional methods for the rapid and proximate analysis of various slaughter traits and may also contribute to future genetic and breeding-related studies in Pacific oysters.
基金supported by grants from the National High Technology Research and Development Program (2012AA10A405-6)National Natural Science Foundation of China (31372524)Special Fund for Independent Innovation of Shandong Province (2013CX80202)
文摘Abstract Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding pro- grams in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a rela- tively large number ofbroodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided im- portant information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.
基金supported by the National High Technology Research and Development Program (2006AA10A409)the National Basic Research Program of China (2010CB126406)
文摘Mass selection for fast growth was conducted in three Pacific oyster (Crassostrea gigas) stocks from China, Japan and Korea using previously established lines (CS1, JS1, and KS1). To determine whether continuous progress can be achieved by selection for growth, the progeny of three second-generation Pacific oyster lines was selected for shell height and evaluated via a 400-day farming experiment. When harvested at the end of the experiment, the selected crosses of CS2, JS2, and KS2 lines grew by 9.2%, 10.2% and 9.6% larger than the control crosses, respectively. During grow-out stage, the genetic gain of three selected lines was (10.2 ± 1.4)%, (10.4 ± 0.3)%, and (8.4 ± 1.6)%, respectively; and the corresponding realized heritability was 0.457 ± 0.143, 0.312 ± 0.071 and 0.332 ± 0.009, respectively. These results indicated that the selection for fast growth achieved steady progress in the second generation of oyster. Our work provides supportive evidence for the continuity of the Pacific oyster selective breeding program.
基金This study was supported by the 863 Program (2004AA603820 and 2006AA10A401)the National Natural Science Foundation (39900111 and 30771662).
文摘The glycogen content and the activities of two key enzymes in glycogen metabolism, glycogen phosphorylase and gly- cogen synthetase, in the gonad of diploid and triploid Pacific oysters (Crassostrea gigas) were compared during maturation. The glycogen content in the gonad of diploids decreased with gametogenesis (by 85.7%), but the glycogen content in the gonad of trip- loids did not vary significantly. Activity of glycogen phosphorylase (GP) in the gonad of diploids decreased with gametogenesis (by 55.5%), while GP activity of triploids did not vary significantly during maturation. Activity of glycogen synthetase (GS) in the gonad of diploids increased slightly with gametogenesis, reaching a peak in June. Activity of GS declined sharply from June to July, which might be due to gonad spawning. GS activity of triploid oysters in spawning time (July and August) was significantly higher than that in other months, which might be explained with a ‘compensating’ mechanism for the higher glycogen content in triploids.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB126402)the National Natural Science Foundation of China(Nos.41206149,40730845)+3 种基金the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A405)the Mollusc Research and Development Center,CARSthe Taishan Scholar Program of Shandong Provincethe Taishan Scholars Climbing Program of Shandong Province of China
文摘Microsatellites are a ubiquitous component of the eukaryote genome and constitute one of the most popular sources of molecular markers for genetic studies. However, no data are currently available regarding microsatellites across the entire genome in oysters, despite their importance to the aquaculture industry. We present the fi rst genome-wide investigation of microsatellites in the Pacifi c oyster Crassostrea gigas by analysis of the complete genome, resequencing, and expression data. The Pacifi c oyster genome is rich in microsatellites. A total of 604 653 repeats were identifi ed, in average of one locus per 815 base pairs(bp). A total of 12 836 genes had coding repeats, and 7 332 were expressed normally, including genes with a wide range of molecular functions. Compared with 20 different species of animals, microsatellites in the oyster genome typically exhibited 1) an intermediate overall frequency; 2) relatively uniform contents of(A)n and(C)n repeats and abundant long(C)n repeats(≥24 bp); 3) large average length of(AG)n repeats; and 4) scarcity of trinucleotide repeats. The microsatellite-fl anking regions exhibited a high degree of polymorphism with a heterozygosity rate of around 2.0%, but there was no correlation between heterozygosity and microsatellite abundance. A total of 19 462 polymorphic microsatellites were discovered, and dinucleotide repeats were the most active, with over 26% of loci found to harbor allelic variations. In all, 7 451 loci with high potential for marker development were identifi ed. Better knowledge of the microsatellites in the oyster genome will provide information for the future design of a wide range of molecular markers and contribute to further advancements in the fi eld of oyster genetics, particularly for molecular-based selection and breeding.
基金Supported by the National Key R&D Program of China(No.2019YFD0900803)the National Natural Science Foundation of China(No.41876185)+2 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018SDKJ0502)the Youth Talent Program Supported by Laboratory for Marine Fisheries Science and Food Production Processes of Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018-MFS-T13)the Modern Agro-industry Technology Research System(No.CARS-49)。
文摘Integrated Multi-Trophic Aquaculture(IMTA)is an effective method for sustainable aquaculture as species from different trophic levels could reduce negative effects from fed species in the environment.A proper proportion of different trophic species in an IMTA system could improve the aquaculture production and environmental sustainability.At present,research on the proper proportions for farming species is scarce.We investigated the effects of IMTA modes of oyster(Crassostrea gigas)and kelp(Saccharina japonica)in different weight ratios on water quality and carbonate system in a closed enclosure experiment for three days in the Sanggou Bay in Shandong Province,China,in December 2017.Nine collocation modes in oyster:kelp weight ratio were tested showing as 24:3,24:2,24:1,16:3,16:2,16:1,8:3,8:2,and 8:1.The water parameters were determined at 17:00 on Day 1(D1),and 6:00 and 17:00 on Days 2(D2)and 3(D3).As two-way ANOVA showed,all increased parameters(dissolved oxygen(DO),pH,chl a,the carbonate system and pCO2)were significantly related to oyster-kelp modes,and interaction between modes and time were also significant(P<0.05).On the 3th day,the 8:3 mode was the highest in DO,pH,chl a,CO32-(P<0.05),and dissolved inorganic carbon(DIC),HCO3-,CO2,and pCO2 were the lowest(P<0.05).According to previous references and the results of this study,the appropriate oyster:kelp proportion at the beginning of winter is from 8:2 to 8:3.The results of this study may help government to optimize the aquaculture structure of Sanggou Bay.
基金Supported by the Natural Science Foundation of Shandong Province(Nos.ZR2010CM017,ZR2012CM004)the National Natural Science Foundation of China(No.31101929)
文摘In this study, a cytochemical method and transmission electron microscopy was used to examine acid phosphatase activities of yolk granules throughout the early developmental stages of the Pacific oyster Crassostrea gigas. This study aimed to investigate the dynamic change of yolk granule acid phosphatase, and the mechanisms underlying its involvement in yolk degradation during the early developmental stages of molluscs. Three types of yolk granules (YGI, YGⅡ, and YGⅢ) that differed in electron density and acid phosphatase reaction were identified in early cleavage, morula, blastula, gastrula, trochophore, and veliger stages. The morphological heterogeneities of the yolk granules were related to acid phosphatase activity and degrees of yolk degradation, indicating the association of acid phosphatase with yolk degradation in embryos and larvae of molluscs. Fusion of yolk granules was observed during embryogenesis and larval development of C. gigas. The fusion of YGI (free of acid phosphatase reaction) with YGII (rich in acid phosphatase reaction) could be the way by which yolk degradation is triggered.
基金The National Natural Science Foundation of China under contract Nos30700619,40706050 and 40706048the National Key Basic Research Development Plan of China under contract No.2006CB400608+1 种基金the HI-TECH Research and Development Program of China of China under contract No.2006AA10Z414the National Science & Technology Pillar Program under contract No.2006BAD01A13.
文摘A muhispecies model for shellfish polycuhure in the Sanggou Bay in China used for large-scale long-line cultivation of the Chinese scallop Chlamysfarreri, the Pacific oyster Crassostrea gigas and the kelp Laminaria japonica is presented. The model includes key physical processes which are the transports of matter at the system boundary, and the main biological process that is the primary production and nutrients release from the bottom. By the model, the seasonal fluctuations of phytoplankton biomass and dissolved inorganic nitrogen(DIN) in 1994 are simulated. Furthermore, if the kelp culture scale is kept constant and the Chinese scallop and the Pacific oyster culture scales are adjusted, virtual shellfish farms are funded and responses of phytoplankton to the largescale shellfish culture are simulated. According to these simulated results, the room limitation, and the hypothesis that shellfish will not grow well if the phytoplankton biomass is less than 8.2 mg/m^3 , the expandable multiple of scallop culture k and that of oyster culture y are determined as k = -0.276 5y +4.690 5 and 0.133 3k +0.006 6y≤0.667 5, where, k ( or y) is equal to 1, the culture scale of scallop ( or oyster) is 8.8 x 109 individuals (or 66 ha, with a density of 59 ind./m^2 ), and the kelp culture scale is 3 300 ha with a density of 12 ind./m^2.