Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a ti...Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.展开更多
Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacif...Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.展开更多
There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circula...There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.展开更多
The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relat...The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.展开更多
The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the e...The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the evolution of the El Niño-Southern Oscillation(ENSO).The possible linkage between the EZW over the western Pacific and the offequatorial monsoonal winds associated with the WNPSM and its decadal changes have not yet been fully understood.Here,we find a non-stationary relationship between the WNPSM and the western Pacific EZW,significantly strengthening their correlation around the late 1980s/early 1990s.This observed shift in the WNPSM–EZW relationship could be explained by the changes in the related sea surface temperature(SST)configurations across the tropical oceans.The enhanced influence from the springtime tropical North Atlantic,summertime tropical central Pacific,and maritime continent SST anomalies may be working together in contributing to the recent intensified WNPSM–EZW co-variability.The observed recent strengthening of the WNPSM–EZW relationship may profoundly impact the climate system,including prompting more effective feedback from the WNPSM on subsequent ENSO evolution and bolstering a stronger biennial tendency of the WNPSM–ENSO coupled system.The results obtained herein imply that the WNPSM,EZW,ENSO,and the tropical North Atlantic SST may be closely linked within a unified climate system with a quasi-biennial rhythm occurring during recent decades,accompanied by a reinforcement of the WNPSM–ENSO interplay quite possibly triggered by enhanced tropical Pacific–Atlantic cross-basin interactions.These results highlight the importance of the tropical Atlantic cross-basin influences in shaping the spatial structure of WNPSM-related wind anomalies and the WNPSM–ENSO interaction.展开更多
This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific S...This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.展开更多
In this paper,a statistical method called Generalized Equilibrium Feedback Analysis(GEFA)is used to investigate the responses of the North Pacific Storm Track(NPST)in the cold season to the multi-scale oceanic variati...In this paper,a statistical method called Generalized Equilibrium Feedback Analysis(GEFA)is used to investigate the responses of the North Pacific Storm Track(NPST)in the cold season to the multi-scale oceanic variations of the Kuroshio Extension(KE)system,including its large-scale variation,oceanic front meridional shift,and mesoscale eddy activity.Results show that in the cold season from the lower to the upper troposphere,the KE large-scale variation significantly weakens the storm track activity over the central North Pacific south of 30°N.The northward shift of the KE front significantly strengthens the storm track activity over the western and central North Pacific south of 40°N,resulting in a southward shift of the NPST.In contrast,the NPST response to KE mesoscale eddy activity is not so significant and relatively shallow,which only shows some significant positive signals near the dateline in the lower and middle troposphere.Furthermore,it is found that baroclinicity and baroclinic energy conversion play an important role in the formation of the NPST response to the KE multi-scale oceanic variations.展开更多
As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combin...As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combined effects of NAO and WP on East Asian(EA)temperature,the NAO and WP indices are divided into four phases from 1980−2021:the positive NAO and WP phase(NAO+/WP+),the negative NAO and WP phase(NAO−/WP−),the positive NAO and negative WP phase(NAO+/WP−),the negative NAO and positive WP phase(NAO−/WP+).In the phase of NAO+/WP+,the low geopotential height(GH)stays in north of EA at 50°−80°N;the surface air temperature anomaly(SATA)is 0.8−1℃lower than Southern Asian.In the phase of NAO−/WP−,the center of high temperature and GH locate in the northeast of EA;the cold air spreads to Southern Asia,causing the SATA decreases 1−1.5℃.In the phase of NAO+/WP−,the high GH belt is formed at 55°−80°N.Meanwhile,the center of high SATA locates in the north of Asia that increases 0.8−1.1℃.The cold airflow causes temperature dropping 0.5−1℃in the south of EA.The SATA improves 0.5−1.5℃in south of EA in the phase of NAO−/WP+.The belt of high GH is formed at 25°−50°N,and blocks the cold air which from Siberia.The NAO and WP generate two warped plate pressure structures in NH,and affect the temperature by different pressure configurations.NAO and WP form different GH,and GH acts to block and push airflow by affecting the air pressure,then causes the temperature to be different from the north and south of EA.Finally,the multiple linear regression result shows that NAO and WP are weakened by each other such as the phase of NAO+/WP+and NAO−/WP−.展开更多
A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropica...A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropical Pacific during 1901-2010.The simulating results show that sea surface salinity(SSS)variation in the region exhibits notable and coherent interdecadal variability signal,which is closely associated with the Interdecadal Pacific Oscillation(IPO).As salinity increases or reduces,the SSS modulations on ENSO amplitude during its warm/cold events vary asymmetrically with positive/negative IPO phases.Physically,salinity interdecadal variability can enhance or reduce ENSO-related conditions in upper-ocean stratification,contributing noticeably to ENSO variability.Salinity anomalies associated with the mixed layer depth and barrier layer thickness can modulate ENSO amplitude during positive and negative IPO phases,resulting in the asymmetry of sea surface temperature(SST)anomaly in the tropical Pacific.During positive IPO phases,SSS interdecadal variability contributes positively to El Niño amplitude but negatively to La Niña amplitude by enhancing or reducing SSS interannual variability,and vice versa during negative IPO phases.Quantitatively,the results indicate that the modulation of the ENSO amplitude by the SSS interdecadal variability is 15%-28%during negative IPO phases and 30%-20%during positive IPO phases,respectively.Evidently,the SSS interdecadal variability associated with IPO and its modulation on ENSO amplitude in the tropical Pacific are among factors essentially contributing ENSO diversity.展开更多
The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captu...The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively.展开更多
The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,t...The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,to reveal the relationship of associated microbiota to the fitness of oysters,temporal dynamics of microbiota in the gill,hemolymph,and hepatopancreas of C.gigas during April 2018-January 2019 were investigated by 16 S rRNA gene sequencing.The microbiota in C.gigas exhibited tissue heterogeneity,of which Spirochaetaceae was dominant in the gill and hemolymph while Mycoplasmataceae enriched in the hepatopancreas.Co-occurrence network demonstrated that the gill microbiota exhibited higher inter-taxon connectivity while the hemolymph microbiota had more modules.The richness(Chao 1 index)and diversity(Shannon index)of microbial community in each tissue showed no significant seasonal variations,except for the hepatopancreas having a higher richness in the autumn.Similarly,beta diversity analysis indicated a relatively stable microbiota in each tissue during the sampling period,showing relative abundance of the dominant taxa exhibiting temporal dynamics.Results indicate that the microbial community in C.gigas showed a tissue-specific stability with temporal dynamics in the composition,which might be essential for the tissue functioning and environmental adaption in oysters.This work provides a baseline microbiota in C.gigas and is helpful for the understanding of host-microbiota interaction in oysters.展开更多
Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the centr...Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the MLD.展开更多
Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improv...Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improved strain with fast-growing trait.However,little is known about the metabolic signatures of the fast-growing trait.In the present study,the non-targeted metabolomics was performed to analyze the metabolic signatures of adductor muscle tissue in one-year old Pacific oysters from fast-growing strain and the wild population.A total of 7767 and 10174 valid peaks were extracted and quantified in ESI^(+)and ESI^(−)modes,resulting in 399 and 381 annotated metabolites,respectively.PCA and OPLS-DA revealed that considerable separation among samples from fastgrowing strain and wild population,suggesting the differences in metabolic signatures.Meanwhile,81 significantly different metabolites(SDMs)were identified in the comparisons between fast-growing strain and wild population,based on the strict thresholds.It was found that there were highly correlation and conserved coordination among these SDMs.KEGG enrichment analysis indicated that the SDMs were tightly related to pantothenate and CoA biosynthesis,steroid hormone biosynthesis,riboflavin metabolism,and arginine and proline metabolism.Of them,the CoA biosynthesis and metabolism,affected by pantetheine and pantothenic acid,might be important for the growth of Pacific oysters under artificial selective breeding.The study provides the comprehensive views of metabolic signatures in response to artificially selective breeding,and is helpful to better understand the molecular mechanism of fastgrowing traits in Pacific oysters.展开更多
ASEAN countries are important targets for the United States to promote the “Indo–Pacific” minilateral framework. Their official, think tank, and media opinions regard this as an important opportunity to enhance the...ASEAN countries are important targets for the United States to promote the “Indo–Pacific” minilateral framework. Their official, think tank, and media opinions regard this as an important opportunity to enhance their national status and promote their national interests, which will be beneficial to peace and stability in the “Indo–Pacific” region. However, they are worried that it will damage the “ASEAN centrality.” ASEAN has responded positively and is committed to reshaping its “central position” and regional leadership and improving regional governance capabilities, but there are differences in the responses of various countries. In the future, ASEAN countries will seek to achieve direct and practical interests through the US “Indo–Pacific” minilateral framework, but they are more wor ried that the “central position of ASEAN” will be replaced and its “neutral and balanced” position will be threatened.展开更多
The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,prev...The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations.展开更多
This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early ...This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early 1990s.In the first period(1979–91,P1),the WNPSM-related precipitation anomaly and horizontal wind anomaly present themselves as an analogous Pacific-Japan(PJ)-like pattern,generally considered to be related to the Niño-3 index in the preceding winter.During the subsequent period(1994–2019,P2),the WNPSM-related precipitation anomaly presents a zonal dipole pattern,correlated significantly with the concurrent SSTA in the Niño-4 and tropical western Pacific regions.The negative(positive)SSTA in the tropical western Pacific and positive(negative)SSTA in the Niño-4 region,could work together to influence the WNPSM,noting that the two types of anomalous SSTA configurations enhance(weaken)the WNPSM by the positive(negative)phase PJ-like wave and Gill response,respectively,with an anomalous cyclone(anticyclone)located in the WNPSM,which shows obvious symmetry about the anomalous circulation.Specifically,the SSTA in Niño-4 impacts the WNPSM by an atmospheric Gill response,with a stronger(weaker)WNPSM along with a positive(negative)SSTA in the Niño-4 region.Furthermore,the SSTA in the tropical western Pacific exerts an influence on the WNPSM by a PJ-like wave,with a stronger(weaker)WNPSM along with a negative(positive)SSTA in the tropical western Pacific.In general,SSTAs in the tropical western Pacific and Niño-4 areas could work together to exert influence on the WNPSM,with the effect most likely to occur in the El Niño(La Niña)developing year in P2.However,the SSTAs in the tropical western Pacific worked alone to exert an influence on the WNPSM mainly in 2013,2014,2016,and 2017,and the SSTAs in the Niño-4 region worked alone to exert an influence on the WNPSM mainly in Central Pacific(CP)La Niña developing years.The sensitivity experiments also can reproduce the PJ-like wave/Gill response associated with SSTA in the tropical western Pacific/Niño-4 regions.Therefore,the respective and synergistic impacts from the Niño-4 region and the tropical western Pacific on the WNPSM have been revealed,which helps us to acquire a better understanding of the interdecadal variations of the WNPSM and its associated climate influences.展开更多
基金supported by the National Key R&D Program of China(Grant No.2017YFC1501604)the National Natural Science Foundation of China(Grant Nos.41875114 and 41875057).
文摘Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.
基金supported by the National Natural Science Foundation of China(Grant Nos.42075053 and 41975128)。
文摘Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.
基金supported by the National Natural Science Foundation of China(Grant No.42075015)the Science and Technology Commission of Shanghai Municipality,China(23DZ1204703).
文摘There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.
基金supported by the National Natural Science Foundation of China[grant number 42025502]the Guangdong Major Project of Basic and Applied Basic Research[grant number 2020B0301030004].
基金supported by the National Natural Science Foundation of China[grant number 42275025]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2023084].
基金funded by the National Natural Science Foundation of China[grant number 42105063]the Youth Training Project of the Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions[project number CAMT-202302]a funded project of Hengyang Normal University[project number 2022QD11].
基金This work was supported by the National Natural Science Foundation of China(Grant No:41776031)the National Key Research and Development Program of China(Grant 2018YFC1506903)+1 种基金the team project funding of scientific research innovation for universities in Guangdong province(Grant 2019KCXTF021)the program for scientific research start-up funds of Guangdong Ocean University(Grant R17051).
文摘The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the evolution of the El Niño-Southern Oscillation(ENSO).The possible linkage between the EZW over the western Pacific and the offequatorial monsoonal winds associated with the WNPSM and its decadal changes have not yet been fully understood.Here,we find a non-stationary relationship between the WNPSM and the western Pacific EZW,significantly strengthening their correlation around the late 1980s/early 1990s.This observed shift in the WNPSM–EZW relationship could be explained by the changes in the related sea surface temperature(SST)configurations across the tropical oceans.The enhanced influence from the springtime tropical North Atlantic,summertime tropical central Pacific,and maritime continent SST anomalies may be working together in contributing to the recent intensified WNPSM–EZW co-variability.The observed recent strengthening of the WNPSM–EZW relationship may profoundly impact the climate system,including prompting more effective feedback from the WNPSM on subsequent ENSO evolution and bolstering a stronger biennial tendency of the WNPSM–ENSO coupled system.The results obtained herein imply that the WNPSM,EZW,ENSO,and the tropical North Atlantic SST may be closely linked within a unified climate system with a quasi-biennial rhythm occurring during recent decades,accompanied by a reinforcement of the WNPSM–ENSO interplay quite possibly triggered by enhanced tropical Pacific–Atlantic cross-basin interactions.These results highlight the importance of the tropical Atlantic cross-basin influences in shaping the spatial structure of WNPSM-related wind anomalies and the WNPSM–ENSO interaction.
基金the National Natural Science Foundation of China(Grant Nos.42130601,42075060,and 41875046).
文摘This study examines the dependence of Arctic stratospheric polar vortex(SPV)variations on the meridional positions of the sea surface temperature(SST)anomalies associated with the first leading mode of North Pacific SST.The principal component 1(PC1)of the first leading mode is obtained by empirical orthogonal function decomposition.Reanalysis data,numerical experiments,and CMIP5 model outputs all suggest that the PC1 events(positive-minus-negative PC1 events),located relatively northward(i.e.,North PC1 events),more easily weaken the Arctic SPV compared to the PC1 events located relatively southward(i.e.,South PC1 events).The analysis indicates that the North PC1-related Aleutian low anomaly is located over the northern North Pacific and thus enhances the climatological trough,which strengthens the planetary-scale wave 1 at mid-to-high latitudes and thereby weakens the SPV.The weakened stratospheric circulation further extends into the troposphere and favors negative surface temperature anomalies over Eurasia.By contrast,the South PC1-related Aleutian low anomaly is located relatively southward,and its constructive interference with the climatological trough is less efficient at high latitudes.Thus,the South PC1 events could not induce an evident enhancement of the planetary-scale waves at high latitudes and thereby a weakening of the SPV on average.The Eurasian cooling associated with South PC1 events(positive-minus-negative PC1 events)is also not prominent.The results of this study suggest that the meridional positions of the PC1 events may be useful for predicting the Arctic SPV and Eurasian surface temperature variations.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 42105066, 42088101, 41975066)supported by the China Postdoctoral Science Foundation (2021M701754)+1 种基金the Postdoctoral Research Funding of Jiangsu Province (2021K052A)the Research Project of the National University of Defense Technology (ZK20-45)
文摘In this paper,a statistical method called Generalized Equilibrium Feedback Analysis(GEFA)is used to investigate the responses of the North Pacific Storm Track(NPST)in the cold season to the multi-scale oceanic variations of the Kuroshio Extension(KE)system,including its large-scale variation,oceanic front meridional shift,and mesoscale eddy activity.Results show that in the cold season from the lower to the upper troposphere,the KE large-scale variation significantly weakens the storm track activity over the central North Pacific south of 30°N.The northward shift of the KE front significantly strengthens the storm track activity over the western and central North Pacific south of 40°N,resulting in a southward shift of the NPST.In contrast,the NPST response to KE mesoscale eddy activity is not so significant and relatively shallow,which only shows some significant positive signals near the dateline in the lower and middle troposphere.Furthermore,it is found that baroclinicity and baroclinic energy conversion play an important role in the formation of the NPST response to the KE multi-scale oceanic variations.
基金The National Key Research and Development Program of China under contract No.2022YFE0140500the National Natural Science Foundation of China under contract Nos 41821004 and 42130406+2 种基金the National Natural Science Foundation of China-Shandong Joint Fund under contract No.U1906215the Open Fund of Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCW2003the Project of Doctoral Found of Qingdao University of Science and Technology under contract No.210010022746.
文摘As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combined effects of NAO and WP on East Asian(EA)temperature,the NAO and WP indices are divided into four phases from 1980−2021:the positive NAO and WP phase(NAO+/WP+),the negative NAO and WP phase(NAO−/WP−),the positive NAO and negative WP phase(NAO+/WP−),the negative NAO and positive WP phase(NAO−/WP+).In the phase of NAO+/WP+,the low geopotential height(GH)stays in north of EA at 50°−80°N;the surface air temperature anomaly(SATA)is 0.8−1℃lower than Southern Asian.In the phase of NAO−/WP−,the center of high temperature and GH locate in the northeast of EA;the cold air spreads to Southern Asia,causing the SATA decreases 1−1.5℃.In the phase of NAO+/WP−,the high GH belt is formed at 55°−80°N.Meanwhile,the center of high SATA locates in the north of Asia that increases 0.8−1.1℃.The cold airflow causes temperature dropping 0.5−1℃in the south of EA.The SATA improves 0.5−1.5℃in south of EA in the phase of NAO−/WP+.The belt of high GH is formed at 25°−50°N,and blocks the cold air which from Siberia.The NAO and WP generate two warped plate pressure structures in NH,and affect the temperature by different pressure configurations.NAO and WP form different GH,and GH acts to block and push airflow by affecting the air pressure,then causes the temperature to be different from the north and south of EA.Finally,the multiple linear regression result shows that NAO and WP are weakened by each other such as the phase of NAO+/WP+and NAO−/WP−.
基金Supported by the National Natural Science Foundation of China(No.42030410)the Laoshan Laboratory(No.LSKJ 202202403)supported by the Startup Foundation for Introducing Talent of NUIST。
文摘A 110-year ensemble simulation of an ocean general circulation model(OGCM)was analyzed to identify the modulation of salinity interdecadal variability on El Niño-Southern Oscillation(ENSO)amplitude in the tropical Pacific during 1901-2010.The simulating results show that sea surface salinity(SSS)variation in the region exhibits notable and coherent interdecadal variability signal,which is closely associated with the Interdecadal Pacific Oscillation(IPO).As salinity increases or reduces,the SSS modulations on ENSO amplitude during its warm/cold events vary asymmetrically with positive/negative IPO phases.Physically,salinity interdecadal variability can enhance or reduce ENSO-related conditions in upper-ocean stratification,contributing noticeably to ENSO variability.Salinity anomalies associated with the mixed layer depth and barrier layer thickness can modulate ENSO amplitude during positive and negative IPO phases,resulting in the asymmetry of sea surface temperature(SST)anomaly in the tropical Pacific.During positive IPO phases,SSS interdecadal variability contributes positively to El Niño amplitude but negatively to La Niña amplitude by enhancing or reducing SSS interannual variability,and vice versa during negative IPO phases.Quantitatively,the results indicate that the modulation of the ENSO amplitude by the SSS interdecadal variability is 15%-28%during negative IPO phases and 30%-20%during positive IPO phases,respectively.Evidently,the SSS interdecadal variability associated with IPO and its modulation on ENSO amplitude in the tropical Pacific are among factors essentially contributing ENSO diversity.
基金supported by the National Natural Science Foundation of China under Grant No.41988101the Chinese Academy of Sciences under Grant XDA20060102the China Postdoctoral Science Foundation under Grant No.2022T150638 and K.C.Wong Education Foundation.
文摘The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively.
基金Supported by the National Natural Science Foundation of China(No.41961124009)the Earmarked Fund for China Agriculture Research System(No.CARS-49)+1 种基金the fund for Outstanding Talents and Innovative Team of Agricultural Scientific Research from MARA,the Innovation Team of Aquaculture Environment Safety from Liaoning Province(No.LT202009)the Dalian High Level Talent Innovation Support Program(No.2022RG14)。
文摘The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,to reveal the relationship of associated microbiota to the fitness of oysters,temporal dynamics of microbiota in the gill,hemolymph,and hepatopancreas of C.gigas during April 2018-January 2019 were investigated by 16 S rRNA gene sequencing.The microbiota in C.gigas exhibited tissue heterogeneity,of which Spirochaetaceae was dominant in the gill and hemolymph while Mycoplasmataceae enriched in the hepatopancreas.Co-occurrence network demonstrated that the gill microbiota exhibited higher inter-taxon connectivity while the hemolymph microbiota had more modules.The richness(Chao 1 index)and diversity(Shannon index)of microbial community in each tissue showed no significant seasonal variations,except for the hepatopancreas having a higher richness in the autumn.Similarly,beta diversity analysis indicated a relatively stable microbiota in each tissue during the sampling period,showing relative abundance of the dominant taxa exhibiting temporal dynamics.Results indicate that the microbial community in C.gigas showed a tissue-specific stability with temporal dynamics in the composition,which might be essential for the tissue functioning and environmental adaption in oysters.This work provides a baseline microbiota in C.gigas and is helpful for the understanding of host-microbiota interaction in oysters.
基金The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2021ZD204the Sino-German Mobility Program under contract No.M0333the grant of Shanghai Frontiers Science Center of Polar Science(SCOPS).
文摘Based on the Ocean Reanalysis System version 5(ORAS5)and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts(ERA5),we investigate the different impacts of the central Pacific(CP)El Niño and the eastern Pacific(EP)El Niño on the Southern Ocean(SO)mixed layer depth(MLD)during austral winter.The MLD response to the EP El Niño shows a dipole pattern in the South Pacific,namely the MLD dipole,which is the leading El Niño-induced MLD variability in the SO.The tropical Pacific warm sea surface temperature anomaly(SSTA)signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low(ASL).This results in an anomalous cyclone over the Amundsen Sea.As a result,the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand,leading to surface cooling through less total surface heat flux,especially surface sensible heat(SH)flux and latent heat(LH)flux,and thus contributing to the mix layer(ML)deepening.The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile,but the total heat flux anomaly shows no significant change.The warm air promotes the sea ice melting and maintains fresh water,which strengthens stratification.This results in a shallower MLD.During the CP El Niño,the response of MLD shows a separate negative MLD anomaly center in the central South Pacific.The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea,which weakens the ASL.Therefore,the anomalous anticyclone dominates the Amundsen Sea.Consequently,the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific,causing surface warming through increased SH,LH,and longwave radiation flux,and thus contributing to the ML shoaling.However,to the east of the anomalous anticyclone,there is no statistically significant impact on the MLD.
基金supported by grants from the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province(Nos.2021ZLGX03 and 2022LZGCQY010)the China Agriculture Research System Project(No.CARS-49).
文摘Pacific oyster(Crassostrea gigas)is one of the most important mollusks cultured all around the world.Selective breeding programs of Pacific oysters in China is initiated since 2006 and developed the genetically improved strain with fast-growing trait.However,little is known about the metabolic signatures of the fast-growing trait.In the present study,the non-targeted metabolomics was performed to analyze the metabolic signatures of adductor muscle tissue in one-year old Pacific oysters from fast-growing strain and the wild population.A total of 7767 and 10174 valid peaks were extracted and quantified in ESI^(+)and ESI^(−)modes,resulting in 399 and 381 annotated metabolites,respectively.PCA and OPLS-DA revealed that considerable separation among samples from fastgrowing strain and wild population,suggesting the differences in metabolic signatures.Meanwhile,81 significantly different metabolites(SDMs)were identified in the comparisons between fast-growing strain and wild population,based on the strict thresholds.It was found that there were highly correlation and conserved coordination among these SDMs.KEGG enrichment analysis indicated that the SDMs were tightly related to pantothenate and CoA biosynthesis,steroid hormone biosynthesis,riboflavin metabolism,and arginine and proline metabolism.Of them,the CoA biosynthesis and metabolism,affected by pantetheine and pantothenic acid,might be important for the growth of Pacific oysters under artificial selective breeding.The study provides the comprehensive views of metabolic signatures in response to artificially selective breeding,and is helpful to better understand the molecular mechanism of fastgrowing traits in Pacific oysters.
基金a phased result of a project supported by the National Social Science Fund of China in 2020 entitled “The Reconstruction of ‘ASEAN Centrality’ in the Context of ‘Indo–Pacific’ Strategy”(Grant Number:20CGJ029)。
文摘ASEAN countries are important targets for the United States to promote the “Indo–Pacific” minilateral framework. Their official, think tank, and media opinions regard this as an important opportunity to enhance their national status and promote their national interests, which will be beneficial to peace and stability in the “Indo–Pacific” region. However, they are worried that it will damage the “ASEAN centrality.” ASEAN has responded positively and is committed to reshaping its “central position” and regional leadership and improving regional governance capabilities, but there are differences in the responses of various countries. In the future, ASEAN countries will seek to achieve direct and practical interests through the US “Indo–Pacific” minilateral framework, but they are more wor ried that the “central position of ASEAN” will be replaced and its “neutral and balanced” position will be threatened.
基金The National Natural Science Foundation of China under contract No.41976221the National Key Scientific and Technological Infrastructure Project“Earth System Numerical Simulation Facility”(EarthLab).
文摘The importance of the Atlantic Multidecadal Oscillation(AMO)and Interdecadal Pacific Oscillation(IPO)in influencing zonally asymmetric changes in Antarctic surface air temperature(SAT)has been established.However,previous studies have primarily concentrated on examining the combined impact of the contrasting phases of the AMO and IPO,which have been dominant since the advent of satellite observations in 1979.This study utilizes long-term reanalysis data to investigate the impact of four combinations of+AMO+IPO,–AMO–IPO,+AMO–IPO,and–AMO+IPO on Antarctic SAT over the past 115 years.The+AMO phase is characterized by a spatial mean temperature amplitude of up to 0.5℃over the North Atlantic Ocean,accompanied by positive sea surface temperature(SST)anomalies in the tropical eastern Pacific and negative SST anomalies in the extratropical-mid-latitude western Pacific,which are indicative of the+IPO phase.The Antarctic SAT exhibits contrasting spatial patterns during the+AMO+IPO and+AMO–IPO periods.However,during the–AMO+IPO period,apart from the Antarctic Peninsula and the vicinity of the Weddell Sea,the entire Antarctic region experiences a warming trend.The most pronounced signal in the SAT anomalies is observed during the austral autumn,whereas the combination of–AMO and–IPO exhibits the smallest magnitude across all the combinations.The wavetrain excited by the SST anomalies associated with the AMO and IPO induces upper-level and surface atmospheric circulation anomalies,which alter the SAT anomalies.Furthermore,downward longwave radiation anomalies related to anomalous cloud cover play a crucial role.In the future,if the phases of AMO and IPO were to reverse(AMO transitioning to a negative phase and IPO transitioning to a positive phase),Antarctica could potentially face more pronounced warming and accelerated melting compared to the current observations.
基金supported by the Fund Project of the Hengyang Normal University(2022QD11)the National Natural Science Foundation of China(Grant No.42105063).
文摘This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early 1990s.In the first period(1979–91,P1),the WNPSM-related precipitation anomaly and horizontal wind anomaly present themselves as an analogous Pacific-Japan(PJ)-like pattern,generally considered to be related to the Niño-3 index in the preceding winter.During the subsequent period(1994–2019,P2),the WNPSM-related precipitation anomaly presents a zonal dipole pattern,correlated significantly with the concurrent SSTA in the Niño-4 and tropical western Pacific regions.The negative(positive)SSTA in the tropical western Pacific and positive(negative)SSTA in the Niño-4 region,could work together to influence the WNPSM,noting that the two types of anomalous SSTA configurations enhance(weaken)the WNPSM by the positive(negative)phase PJ-like wave and Gill response,respectively,with an anomalous cyclone(anticyclone)located in the WNPSM,which shows obvious symmetry about the anomalous circulation.Specifically,the SSTA in Niño-4 impacts the WNPSM by an atmospheric Gill response,with a stronger(weaker)WNPSM along with a positive(negative)SSTA in the Niño-4 region.Furthermore,the SSTA in the tropical western Pacific exerts an influence on the WNPSM by a PJ-like wave,with a stronger(weaker)WNPSM along with a negative(positive)SSTA in the tropical western Pacific.In general,SSTAs in the tropical western Pacific and Niño-4 areas could work together to exert influence on the WNPSM,with the effect most likely to occur in the El Niño(La Niña)developing year in P2.However,the SSTAs in the tropical western Pacific worked alone to exert an influence on the WNPSM mainly in 2013,2014,2016,and 2017,and the SSTAs in the Niño-4 region worked alone to exert an influence on the WNPSM mainly in Central Pacific(CP)La Niña developing years.The sensitivity experiments also can reproduce the PJ-like wave/Gill response associated with SSTA in the tropical western Pacific/Niño-4 regions.Therefore,the respective and synergistic impacts from the Niño-4 region and the tropical western Pacific on the WNPSM have been revealed,which helps us to acquire a better understanding of the interdecadal variations of the WNPSM and its associated climate influences.