In this paper we consider the problem of finding the smallest number such that any graph G of order n admits a decomposition into edge disjoint copies of C4 and single edges with at most elements. We solve this proble...In this paper we consider the problem of finding the smallest number such that any graph G of order n admits a decomposition into edge disjoint copies of C4 and single edges with at most elements. We solve this problem for n sufficiently large.展开更多
Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism ...Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism of precipitation in RPB. Particle size and morphology were characterized by TEM, while the quality of synthesized BaSO4 powders was analyzed by XRD and BET, and compared with those prepared in a stirred-tank reactor. The important role of the inlet region of the RPB in the whole precipitation process was experimentally confirmed, as a significant essence for the design of industrial RPB for the precipitation of sparingly soluble materials. The effects of different operating conditions on particle size were also investigated, showing that particle size decreases with increasing rotational speed and liquid flow rate, due to the enhancement of micromixing in the RPB.展开更多
基金support from FCT—Fundacao para a Ciencia e a Tecnologia(Portugal),through Projects PTDC/MAT/113207/2009PEst-OE/MAT/UI0297/2011(CMA).
文摘In this paper we consider the problem of finding the smallest number such that any graph G of order n admits a decomposition into edge disjoint copies of C4 and single edges with at most elements. We solve this problem for n sufficiently large.
基金supported by the National Natural Science Foundation of China(Nos.20821004,20990221)the Beijing Municipal Commission of Education(No.JD100100403)the Innovation Team Program of Ministry of Education of China
文摘Precipitation of BaSO4 nanoparticles was studied for the first time in a specially designed rotating packed bed (RPB), which allowed sampling at different radial positions to provide better insight of the mechanism of precipitation in RPB. Particle size and morphology were characterized by TEM, while the quality of synthesized BaSO4 powders was analyzed by XRD and BET, and compared with those prepared in a stirred-tank reactor. The important role of the inlet region of the RPB in the whole precipitation process was experimentally confirmed, as a significant essence for the design of industrial RPB for the precipitation of sparingly soluble materials. The effects of different operating conditions on particle size were also investigated, showing that particle size decreases with increasing rotational speed and liquid flow rate, due to the enhancement of micromixing in the RPB.