期刊文献+
共找到818篇文章
< 1 2 41 >
每页显示 20 50 100
Challenges and prospects for advanced packaging 被引量:1
1
作者 Zhiwen Chen Jiaju Zhang +1 位作者 Shizhao Wang Ching-Ping Wong 《Fundamental Research》 CSCD 2024年第6期1455-1458,共4页
In the post-Moore era,advanced packaging is becoming more critical to meet the everlasting demands of elec-tronic products with smaller size,more powerful performance and lower cost.In this paper,developments in advan... In the post-Moore era,advanced packaging is becoming more critical to meet the everlasting demands of elec-tronic products with smaller size,more powerful performance and lower cost.In this paper,developments in advanced packaging have been discussed,such as 3D IC packaging,fan-out packaging,and chiplet packaging.Insights on the major advantages and challenges have also been briefly introduced.Our prospects about the solu-tions to some fundamental issues in sustainable development of advanced packaging have also been elucidated.The critical aspects and opportunities lie in standardization,co-design tools,new handling technologies,as well as multi-scale modeling and simulation. 展开更多
关键词 Advanced packaging Wafer-level packaging 3D IC packaging Fan-out packaging Chiplet packaging Challenges and opportunities
原文传递
Product family modeling technology for customized cosmetic packaging design based on basic-element theory 被引量:1
2
作者 Tao Chen Ding-Bang Luh Jinguang Wang 《Journal of Dermatologic Science and Cosmetic Technology》 2024年第1期2-12,共11页
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable... Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model. 展开更多
关键词 packaging design Cosmetic packaging Product family modeling technology Basic-element theory Design for mass customization
下载PDF
A high-efficiency transformer-in-package isolated DC-DC converter using glass-based fan-out wafer-level packaging 被引量:1
3
作者 Lin Cheng Zuohuan Chen +1 位作者 Daquan Yu Dongfang Pan 《Fundamental Research》 CSCD 2024年第6期1407-1414,共8页
A transformer-in-package(TiP)isolated direct current-direct current(DC-DC)converter using glass-based fan-out wafer-level packaging(FOWLP)is proposed.By using 3-layer redistribution layers(RDLs),both the transformer a... A transformer-in-package(TiP)isolated direct current-direct current(DC-DC)converter using glass-based fan-out wafer-level packaging(FOWLP)is proposed.By using 3-layer redistribution layers(RDLs),both the transformer and interconnections are built without an additional transformer chip,and the converter only has 2 dies:a transmitter(TX)chip and a receiver(RX)chip.The proposed solution results in a significant reduction in the cost and makes major improvements in the form factor and power density.Moreover,the transformer built by the RDLs achieves a high quality factor(Q)and high coupling factor(k),and the efficiency of the converter is thus improved.The TX and RX chips were implemented in a 0.18μm Biopolar CMOS DMOS(BCD)process and embedded in a compact package with a size of 5 mm×5 mm.With an output capacitance of 10μF,the converter achieves a peak efficiency of 46.5%at 0.3 W output power and a maximum delivery power of 1.25 W,achieving a maximum power density of 50 mW/mm2. 展开更多
关键词 Isolated DC-DC converter Transmitter(TX) Receiver(RX) TRANSFORMER Fan-out wafer level packaging(FOWLP) Power density Efficiency
原文传递
The application of multi-scale simulation in advanced electronic packaging 被引量:1
4
作者 Wei Yu Shucan Cheng +5 位作者 Zeyuan Li Li Liu Zhaofu Zhang Yanpu Zhao Yuzheng Guo Sheng Liu 《Fundamental Research》 CSCD 2024年第6期1442-1454,共13页
Electronic packaging is an essential branch of electronic engineering that aims to protect electronic,microelec-tronic,and nanoelectronic systems from environmental conditions.The design of electronic packaging is hig... Electronic packaging is an essential branch of electronic engineering that aims to protect electronic,microelec-tronic,and nanoelectronic systems from environmental conditions.The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena,such as thermal transport,electromagnetic fields,and mechanical stress.This review presents a comprehensive overview of the multiphysics coupling of electric,magnetic,thermal,mechanical,and fluid fields,which are crucial for assessing the performance and reliability of electronic devices.The recent advancements in multi-scale simulation techniques are also system-atically summarized,such as finite element methods at the macroscopic scale,molecular dynamics and density functional theory at the microscopic scale,and particularly machine learning methods for bridging different scales.Additionally,we illustrate how these methods can be applied to study various aspects of electronic pack-aging,such as material properties,interfacial failure,thermal management,electromigration,and stress analysis.The challenges and the potential applications of multi-scale simulation techniques in electronic packaging are also highlighted.Further,some future directions for multi-scale simulation techniques in electronic packaging are concluded for further investigation. 展开更多
关键词 Advanced electronic packaging Multiphysics coupling Machine learning methods Multi-scale simulation Electronic devices
原文传递
Sustainable, thermoplastic and hydrophobic coating from natural cellulose and cinnamon to fabricate eco-friendly catering packaging
5
作者 Rumeng Xu Chunchun Yin +4 位作者 Jingxuan You Jinming Zhang Qinyong Mi Jin Wu Jun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期927-936,共10页
Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and ... Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes. 展开更多
关键词 Thermoplastic coating Bio-degradable adhesive Natural products Cellulose Eco-friendly packaging
下载PDF
Analysis of quality-related proteins in golden pompano(Trachinotus ovatus)fillets with modified atmosphere packaging under superchilling storage
6
作者 Chuang Pan Xiaofan Zhang +4 位作者 Shengjun Chen Yong Xue Yanyan Wu Yueqi Wang Di Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2253-2265,共13页
Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between pr... Here,we aimed to study the changes in proteome of golden pompano fillets during post-mortem storage.Tandem mass tags(TMT)-labeled quantitative proteomic strategy was applied to investigate the relationships between protein changes and quality characteristics of modified atmosphere packaging(MAP)fillets during superchilling(-3°C)storage.Scanning electron microscopy was used to show that the muscle histology microstructure of fillets was damaged to varying degrees,and low-field nuclear magnetic resonance was used to find that the immobilized water and free water in the muscle of fillets changed significantly.Total sulfhydryl content,TCA-soluble peptides and Ca2+-ATPase activity also showed that the fillet protein had a deterioration by oxidation and denaturation.The Fresh(FS),MAP,and air packaging(AP)groups were set.Total of 150 proteins were identified as differential abundant proteins(DAPs)in MAP/FS,while 209 DAPs were in AP/FS group.The KEGG pathway analysis indicated that most DAPs were involved in binding proteins and protein turnover.Correlation analysis found that 52 DAPs were correlated with quality traits.Among them,8 highly correlated DAPs are expected to be used as potential quality markers for protein oxidation and water-holding capacity.These results provide a further understanding of the muscle deterioration mechanism of packaging golden pompano fillets during superchilling. 展开更多
关键词 Tandem mass tags(TMT)proteomics Trachinotus ovatus Modified atmosphere packaging Superchilling storage Low-field nuclear magnetic resonance Protein deterioration
下载PDF
Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging
7
作者 Ponusa Songtipya Thummanoon Prodpran +1 位作者 Ladawan Songtipya Theerarat Sengsuk 《Journal of Renewable Materials》 EI CAS 2024年第5期951-967,共17页
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v... The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material. 展开更多
关键词 Poly(lactic acid)nanocomposite ORGANOCLAY zinc oxide barrier property antibacterial activity active food packaging
下载PDF
Greener,Safer Packaging:Carbon Nanotubes/Gelatin-Enhanced Recycled Paper for Fire Retardation with DFT Calculations
8
作者 Hebat-Allah S.Tohamy 《Journal of Renewable Materials》 EI CAS 2024年第12期1963-1983,共21页
Fire retardant CNTs/WPP/Gel composite papers were fabricated by incorporating bio-based carbon nanotubes(CNTs)recycled from mature beech pinewood sawdust(MB)and cellulosic waste printed paper(WPP)into a gelatin soluti... Fire retardant CNTs/WPP/Gel composite papers were fabricated by incorporating bio-based carbon nanotubes(CNTs)recycled from mature beech pinewood sawdust(MB)and cellulosic waste printed paper(WPP)into a gelatin solution(Gel)and allowing the mixture to dry at room temperature.The CNTs within the WPP matrix formed a network,enhancing the mechanical and thermal properties of the resulting CNTs paper sheet.In comparison to pure WPP/Gel,CNTs/WPP/Gel exhibited superior flexibility,mechanical toughness,and notable flame retardancy characteristics.This study provides a unique and practical method for producing flame-retardant CNTs/WPP/Gel sheets,suitable for diverse industrial applications,especially packaging,where used paper materials pose a significant fire risk.Bio-CNT-based fire-resistant packaging offers enhanced safety during transportation and storage.The sheets demonstrated increased strength and stiffness,with optimal mechanical properties achieved at a 20%CNTs loading.Additionally,thermal stability was improved,as confirmed by thermogravimetric analysis(TGA)and differential thermogravimetry(DTG).Flame retardancy tests revealed a rise in LOI(Limiting Oxygen Index)values with increasing CNTs content,indicating the CNTs’effectiveness in inhibiting combustion.The compatibility of recycled paper,CNTs,and Gel suggests potential applications in industrial fields,capitalizing on the biocompatible and biodegradable nature of cellulose.Density functional theory(DFT)calculations using the B3LYP with the 6-31G(d)basis set were employed to optimize the stability of these compounds and elucidate their chemical interactions. 展开更多
关键词 Carbon nanotubes packaging cellulosic waste printed paper flame retardancy DFT calculations
下载PDF
Modified Atmospheric Packaging and Its Effect on Postharvest Cannabis Quality
9
作者 Luke L. MacLaughlin Mason T. MacDonald 《American Journal of Plant Sciences》 CAS 2024年第3期222-234,共13页
Cannabis sativa L. is used as fiber, food, and medicine in several countries. Though it is illegal for recreational use in most of the world, there are some countries that have legalized production and sale. There is ... Cannabis sativa L. is used as fiber, food, and medicine in several countries. Though it is illegal for recreational use in most of the world, there are some countries that have legalized production and sale. There is a lot of research on production of cannabis, but less so on storage technologies. Cannabis contains several high value compounds, such as cannabinoids and terpenoids, that are susceptible to degradation via light, temperature, and oxygen. Several studies have explored temperature and light, and industry has adjusted accordingly. However, less is known about oxygen-induced degradation. Biochemical studies have demonstrated oxidative degradation of high value compounds, and many producers use some form of modified atmospheric packaging (MAP) for storage. However, the efficacy of MAP is unclear. The objective of this paper is to review our current understanding of MAP in postharvest cannabis storage and identify avenues where additional research is needed. 展开更多
关键词 CANNABINOIDS Cannabis sativa Marijuana Nitrogen packaging Oxidation POSTHARVEST TERPENOIDS THC
下载PDF
2024 China International Personal Care Material and Packaging&Machinery Equipment Expo(IPE2024)and 2024 China Cosmetics New Material Innovation Development Conference Successfully Wrapped Up
10
《China Detergent & Cosmetics》 CAS 2024年第4期70-71,共2页
China Research Institute of Daily Chemical and China International Beauty Expo(CIBE)successfully co-hosted“2024 China International Personal Care Material and Packaging&Machinery Equipment Expo(IPE2024)”during t... China Research Institute of Daily Chemical and China International Beauty Expo(CIBE)successfully co-hosted“2024 China International Personal Care Material and Packaging&Machinery Equipment Expo(IPE2024)”during the show of the 65th China(Guangzhou)International Beauty Expo between September 4th and September 6th in Exhibition Area 1.1,China Import and Export Fair,Guangzhou. 展开更多
关键词 EXPORT packaging GUANGZHOU
下载PDF
Study on the Influence of Food Packaging on the Psychology of Different Groups of Consumers
11
作者 CHEN Dai-yao 《Journal of Literature and Art Studies》 2024年第4期306-309,共4页
With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of s... With the vigorous development of consumer culture in today’s society,various types of food packaging also appear in front of consumers in different forms.There are very big differences in food packaging in terms of shape,color,style and other aspects of information transmission,which have the most direct impact on the audience’s food consumption needs.Driven by the consumption-oriented society,food packaging has shown very obvious comprehensive characteristics,is significantly interdisciplinary,and has close connections with other disciplines.This article will analyze and sort out the impact of food packaging on consumer psychology from different perspectives. 展开更多
关键词 packaging design food design consumer psychology
下载PDF
Research on Silicon Carbide Dispersion-Reinforced Hypereutectic Aluminum-Silicon Electronic Packaging Materials
12
作者 Ruixi Guo Yunhao Hua Tianze Jia 《Journal of Electronic Research and Application》 2024年第2期86-94,共9页
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect... The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties. 展开更多
关键词 Silicon carbide Electronic packaging materials Powder metallurgy Mechanical properties Composite materials
下载PDF
Analyzing the Application of Traditional Chinese Cultural Elements in Brand Packaging Design With Design Semiotics:A Case Study of Modern China Tea Shop
13
作者 Ziyang Huang Euitai Jung 《Psychology Research》 2024年第7期215-222,共8页
This paper takes the Chinese-themed packaging of Modern China Tea Shop as the research object,analyzes the brand positioning and the embodiment of traditional Chinese cultural elements in its brand packaging design,an... This paper takes the Chinese-themed packaging of Modern China Tea Shop as the research object,analyzes the brand positioning and the embodiment of traditional Chinese cultural elements in its brand packaging design,and mainly analyzes the characteristics of traditional Chinese culture and symbols such as painting,text,and color in the packaging design.This paper explores the creative design and application of packaging with traditional Chinese elements in its brand touch points through the analysis method in culture code brand design and points out that the packaging design of Modern China Tea Shop is close to consumer psychology,and the Era Z has gradually become the main force of Chinese consumption.The brand accurately grasps the consumer psychology in the era of Gen-Z so as to formulate corresponding marketing strategies.Combined with the analysis of brand trends and consumers,it is clear that the packaging design of Chinese style is not a simple superposition of traditional elements and modern elements,but the integration and innovation of various cultural elements based on the current market and consumers.Furthermore,the paper summarizes the ways of traditional Chinese elements to create commercial value and provides a feasible reference for the brand positioning and packaging design of other tea products in China. 展开更多
关键词 Modern China Tea Shop SEMIOTICS traditional Chinese cultural elements brand packaging design
下载PDF
Microstructure and properties of electronic packaging box with high silicon aluminum-base alloy by semi-solid thixoforming 被引量:10
14
作者 贾琪瑾 刘俊友 +1 位作者 李艳霞 王文韶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期80-85,共6页
The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the b... The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the box were observed by optical microscopy and scanning electron microscopy,and the thermophysical and mechanical properties of the box were tested.The results show that there exists the segregation phenomenon between the primary Si phase and the liquid phase during thixoforming,the liquid phase flows from the box,and the primary Si phase accumulates at the bottom of the box.The volume fraction of primary Si phase decreases gradually from the bottom to the walls.Accordingly,the thermal conductivities of bottom center and walls are 107.6 and 131.5 W/(m·K),the coefficients of thermal expansion(CTE) are 7.9×10-6 and 10.6×10-6 K-1,respectively.The flexural strength increases slightly from 167 to 180 MPa.The microstructures and properties of the box show gradient distribution overall. 展开更多
关键词 high silicon aluminum-base alloy electronic packaging semi-solid thixoforming thermal conductivity coefficient of thermal expansion
下载PDF
Microstructure and properties of Al/Si/SiC composites for electronic packaging 被引量:13
15
作者 朱晓敏 于家康 王新宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1686-1692,共7页
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh... The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution. 展开更多
关键词 Al/Si/SiC composite electronic packaging thermal properties flexural strength
下载PDF
Microstructure characterization and thermal properties of hypereutectic Si-Al alloy for electronic packaging applications 被引量:14
16
作者 余琨 李少君 +2 位作者 陈立三 赵为上 李鹏飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1412-1417,共6页
The rapid solidified process and hot press method were performed to produce three hypereutectic 55%Si-Al, 70%Si-Al and 90%Si-Al alloys for heat dissipation materials. The results show that the atomization is an effect... The rapid solidified process and hot press method were performed to produce three hypereutectic 55%Si-Al, 70%Si-Al and 90%Si-Al alloys for heat dissipation materials. The results show that the atomization is an effective rapid solidified method to produce the Si-Al alloy and the size of atomized Si-Al alloy powder is less than 50 μm. The rapid solidified Si-Al alloy powder were hot pressed at 550 ℃ with the pressure of 700 MPa to obtain the relative densities of 99.4%, 99.2% and 94.4% for 55%Si-Al, 70%Si-Al and 90%Si-Al alloys, respectively. The typical physical properties, such as the thermal conductivity, coefficient of thermal expansion (CTE) and electrical conductivity of rapid solidified Si-Al alloys are acceptable as a heat dissipation material for many semiconductor devices. The 55%Si-Al alloy changes greatly (CTE) with the increase of temperature but obtains a good thermal conductivity. The CTE of 90%Si-Al alloy matches with the silicon very well but its thermal conductivity value is less than 100 W/(m.K). Therefore, the 70%Si-Al alloy possesses the best comprehensive properties of CTE and thermal conductivity for using as the heat sink materials. 展开更多
关键词 Si-Al alloy rapid solidification thermal properties electronic packaging application
下载PDF
Microstructure and properties of SiC_p/Al electronic packaging shell produced by liquid-solid separation 被引量:3
17
作者 郭明海 刘俊友 李艳霞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1039-1045,共7页
The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC... The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC as well as the shell’s fracture surface were examined by optical microscopy and scanning electron microscopy, and the thermo-physical and mechanical properties of the shell were also tested. The results show that Al matrix has a net-like structure while SiC is uniformly distributed in the Al matrix. The SiCp/Al composites have a low density of 2.93 g/cm^3, and its relative density is 98.7%. Thermal conductivity of the composites is 175 W/(·K), coefficient of thermal expansion (CTE) is 10.3×10^-6 K-1 (25-400 ℃), compressive strength is 496 MPa, bending strength is 404.5 MPa, and the main fracture mode is brittle fracture of SiC particles accompanied by ductile fracture of Al matrix.Its thermal conductivity is higher than that of Si/Al alloy, and its CTE matches with that of the chip material. 展开更多
关键词 liquid-solid separation near-net thixoforming SiCp/Al electronic packaging shell thermal conductivity coefficient ofthermal expansion
下载PDF
Study on Vigor of Kenaf Seeds Stored with Different Packaging Methods for 31 Years 被引量:1
18
作者 覃初贤 《Agricultural Science & Technology》 CAS 2016年第8期1933-1937,共5页
This study was conducted to investigate the effects of different packaging methods on seed germination and vigor under a long-term bank storage condition, selecting suitable packaging materials and methods, and compre... This study was conducted to investigate the effects of different packaging methods on seed germination and vigor under a long-term bank storage condition, selecting suitable packaging materials and methods, and comprehensively estimate changes in seed vigor of seeds stored with different packaging materials. Hibiscus cannabinus L. seeds were stored in aluminium box, seed box, glass bottle, POlyethylene film bag, sack and kraft paper bag as packaging materials in a, long-term bank and tested for their seeds germinability, electrical conductivity and field seedling rate after 31 years. The results showed that the kenaf seeds with an initial germination rate of 88% exhibited the germination rates over 79.7% after being stored in the 6 packaging materials for 31 years, the germination rates of seeds packaged with paper bag and sack and of those sealed in film bag and aluminium box showed significantly decreased germination rates, while the seeds sealed in seed boxes and glass bottles exhibited non-significant decreases in seed germination rate, and their germination rates were still above 85%. Seed box and glass bottle were the packaging materials most suitable for long-term safe storage of kenaf seeds with a safe storage period long than 31 years. 展开更多
关键词 Kenaf seed Long-term storage packaging materials GERMINATION VIGOR
下载PDF
Recent advances in biomolecule-based films and coatings for active and smart food packaging applications 被引量:1
19
作者 Wenqi Yin Chao Qiu +6 位作者 Hangyan Ji Xiaojing Li Shangyuan Sang David Julian McClements Aiquan Jiao Jinpeng Wang Zhengyu Jin 《Food Bioscience》 SCIE 2023年第2期1-12,共12页
Ideally,packaging materials should ensure the safety and quality of foods,without contributing to environmental degradation.Consequently,there is interest in the development of biodegradable films assembled from natur... Ideally,packaging materials should ensure the safety and quality of foods,without contributing to environmental degradation.Consequently,there is interest in the development of biodegradable films assembled from natural materials,such as polysaccharides,proteins,lipids,and their mixtures.In this review,the physicochemical attributes and functional characteristics of biodegradable films prepared from these food-grade natural substances are summarized.Recent advances in the production of active and intelligent packaging materials are also discussed.Active packaging is designed to improve the shelf life of packaged foods by including antimicrobials or antioxidants,such as essential oils.Intelligent packaging is designed to provide real-time information about the quality,freshness,or safety of packaged foods by including indicators in the film that are responsive to changes in storage conditions,gas levels,pH,etc.Potential applications of intelligent and active packaging materials to fruit,vegetable,meat,seafood,and dairy products are discussed. 展开更多
关键词 Biodegradable packaging Food-grade natural substances Active agents Smart packaging Food preservation
原文传递
Effects of rolling and annealing on microstructures and properties of Cu/Invar electronic packaging composites prepared by powder metallurgy 被引量:5
20
作者 吴丹 杨磊 +2 位作者 史常东 吴玉程 汤文明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1995-2002,共8页
The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites wer... The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃). 展开更多
关键词 electronic packaging material Cu/Invar composite ROLLING ANNEALING
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部