期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge 被引量:7
1
作者 张帅 高远 +2 位作者 孙昊 范喆 邵涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第6期59-66,共8页
This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process.Both the charge accumulation and release processes in the dielectric barrier dis... This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process.Both the charge accumulation and release processes in the dielectric barrier discharge reactor and packed-bed reactor were investigated by measuring voltage and current waveforms and taking ICCD images.The packing material was ZrO2 pellets and the reactors were driven by a parameterized nanosecond pulse source.The quantity of transferred charges in the dielectric barrier discharge reactor was enhanced when decreasing pulse rise time or increasing pulse width(within 150 ns),but reduced when the gas gap was packed with pellets.The quantity of accumulated charges in the primary discharge was larger than the quantity of released charges in the secondary discharges in the dielectric barrier discharge reactor,but they were almost equal in the packed-bed reactor.It indicates that the discharge behavior has been changed from the view of charge transfer process once the gas gap was packed with pellets,and the ICCD images confirmed it. 展开更多
关键词 non-thermal plasma packed-bed reactor dry reforming plasma catalysis charge transfer
下载PDF
Reaction Selectivity Improvement for Reduction of Nitrobenzene in a Packed-Bed Electrode Reactor under Periodic-Current Control 被引量:1
2
作者 丁平 杨晓勤 袁渭康 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第4期44-51,共8页
Rectangular wave current control of the electrochemical reduction of nitrobenzene im-proves the selectivity for p-aminophenol(PAP) compared to direct current(d.c.) control at thesame average current density in a flow-... Rectangular wave current control of the electrochemical reduction of nitrobenzene im-proves the selectivity for p-aminophenol(PAP) compared to direct current(d.c.) control at thesame average current density in a flow-by packed-bed reactor.Optimal increase in PAP selectivitycan be obtained at about a frequency of 50Hz and a duty cycle of 0.2.A mathematical model isset up to incorporate the effects of mass transfer,hydrogen evolution and double layer charging,and is solved using the Duhamel’s superposition principle and the modified Crank-Nicolson methodwith the upwind scheme.The conventional d.c.control cases are also calculated for comparison.Calculations can be applied to predict the reaction results under periodic current and d.c.control,but both display the same trends compared to experimental data. 展开更多
关键词 NITROBENZENE ELECTROREDUCTION packed-bed ELECTRODE REACTOR PERIODIC current control
下载PDF
Numerical Modeling of NO Formation during Packed-bed Combustion of Coke Granules 被引量:1
3
作者 Chunbao Xu, Shengli Wu, Daqiang Cang (Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China Institute for Chemical Reaction Science, Tohoku University, Japan) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第4期261-268,共8页
A comprehensive kinetic model of NO formation during coke combustion in packed-bed in presence of noncombustible particles was developed. The detailed homogeneous gas-phase chemistry (including 102 chemical reactions... A comprehensive kinetic model of NO formation during coke combustion in packed-bed in presence of noncombustible particles was developed. The detailed homogeneous gas-phase chemistry (including 102 chemical reactions), heterogeneous gas-solid chemistry (including 11 reactions) of coke combustion and NO formation, and the heat and mass transfer were taken into account in the present model. The governing equations which are strongly coupled, non-linear and unsteady with 26 unknowns in total, were dispersed into differential equations with the finite differential method. Meanwhile, all the differential equations were numerically solved to give the time-histories and space-distributions oftemperatures of the bed and gas phase as well as the concentrations of all the gaseous species. By comparison, the experimental data were explained well by the calculated results. Based on the kinetic and mathematical model, the effects of O2 content of inlet gas, the initial chemical analysis of coke, bed-temperature and local reductive atmosphere (CO/O2) on NO formation during packed-bed coke combustion were numerically discussed. It was found that coke samples with a higher initial content of [N] and volatile matters, combusted under a suitable O2-containing atmosphere produced less NO emission. The reactions between CO and NO, catalyzed by high temperature surface of coke particles may be responsible for efficient reduction of NO. 展开更多
关键词 kinetic model NO formation COMBUSTION packed-bed coke Metallurgy
下载PDF
Ozone generation enhanced by silica catalyst in packed-bed DBD reactor
4
作者 曾鑫 章亚芳 +3 位作者 郭良银 古文泉 袁萍 魏林生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第8期89-94,共6页
In this paper,three dielectric barrier discharge(DBD)configurations,which were plain DBD with no packing,DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers,were employed to investigate the eff... In this paper,three dielectric barrier discharge(DBD)configurations,which were plain DBD with no packing,DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers,were employed to investigate the effect and catalytic mechanism of catalyst materials in a packed-bed ozone generator.From the experimental results,it was clear that the DBD configuration with packed pure fibers and packed loaded fibers promotes ozone generation.For the packed-bed reactor,ozone concentration and ozone yield were enhanced by an increase of electric field in the discharge gap with the packed-bed effect.Meanwhile,the enhancement of ozone concentration and yield for the DBD reactor packed by loaded fibers with silica nanoparticles was due to the catalysis of silica nanoparticles on the fiber surface.The adsorption of silica nanoparticles on the fiber surface can prolong the retention time of active species and enhance surface reactions. 展开更多
关键词 DBD ozone generation packed-bed reactor silica catalysis surface reaction
下载PDF
Numerical simulation of packed-bed reactor for oxidative coupling of methane
5
作者 Zhao Zhang Ziqi Guo Shengfu Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期23-30,共8页
A three-dimensional geometric model of the oxidative coupling of methane (OCM) packed-bed reactor loaded with Na2WO4-Mn/SiO2 partic- ulate catalyst was set up, and an improved Stansch kinetic model was established t... A three-dimensional geometric model of the oxidative coupling of methane (OCM) packed-bed reactor loaded with Na2WO4-Mn/SiO2 partic- ulate catalyst was set up, and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software. The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant was 80 mL/min under standard state, the ratio of CH4/O2 was 3, the temperature and pressure were 800 ℃ and 1 atm, respectively. The contour of the characteristics parameters in the catalyst bed was analyzed, such as the species mass fractions, temperature, the heat flux on side wall surface, pressure, fluid density and velocity. The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity to products (C2H6, C2H4, CO2, CO) in the reactor outlet with an error range of 4-2%. The mass fractions of CH4 and O2 decreased from 0.6 and 0.4 in the catalyst bed inlet to 0.436 and 0.142 in the outlet, where the mass fractions of C2H6, C2H4, CO and CO2 were 0.035, 0.061, 0.032 and 0.106, respectively. Due to the existence of laminar boundary layer, the contours of each component bent upwards in the vicinity of the boundary layer. This OCM reaction was volume increase reaction and the total moles of products were greater than those of reactants. The flow field in the catalyst bed maintained constant temperature and pressure. The fluid density decreased gradually from 2.28 kg/m3 in the inlet of the catalyst bed to 2.22 kg/m3 in the outlet of the catalyst bed, while the velocity increased from 0.108 m/s to 0.115 m/s. 展开更多
关键词 oxidative coupling of methane packed-bed reactor computational fluid dynamics numerical simulation
下载PDF
Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge
6
作者 秦豫川 钱树楼 +1 位作者 王城 夏维东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第9期114-119,共6页
The effects of nitrogen on ozone synthesis are studied in a coaxial cylinder generator with dielectric barrier discharge(DBD) and pack-bed dielectric barrier discharge(PB-DBD).A series of 10 h discharge experiment... The effects of nitrogen on ozone synthesis are studied in a coaxial cylinder generator with dielectric barrier discharge(DBD) and pack-bed dielectric barrier discharge(PB-DBD).A series of 10 h discharge experiments are conducted adopting a bare stainless electrode and bare copper electrode.Results show that the material of the electrode can affect the ozone synthesis.It is inferred that the ozone zero phenomenon(OZP) may be induced from ozone decomposing by metallic oxide catalysis.Packing dielectric particles can reduce the OZP.Adding a certain amount of nitrogen into the oxygen feed gas can further eliminate the OZP,and increase the ozone concentration significantly,but decreases the maximum energy efficiency of ozone generators.Initial analysis indicates that the optimal proportion of nitrogen addition is inversely related to the average reduced electric field strength in the discharge region. 展开更多
关键词 ozone synthesis ozone zero phenomenon NITROGEN packed-bed dielectric barrier discharge
下载PDF
Investigation on Degradation Path of SF_(6)in Packed-bed Plasma:Effect of Plasma-generated Radicals
7
作者 Zhaolun Cui Chang Zhou +4 位作者 Amin Jafarzadeh Xiaoxing Zhang Peng Gao Licheng Li Yanpeng Hao 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1231-1241,共11页
SF_(6)degradation mechanism in non-thermal plasma(NTP)systems is not fully understood due to the formation of a complex physico-chemical reaction network,especially when reactive gases and packing materials are involv... SF_(6)degradation mechanism in non-thermal plasma(NTP)systems is not fully understood due to the formation of a complex physico-chemical reaction network,especially when reactive gases and packing materials are involved.In this work,we conduct a combined experimental and theoretical study to unravel the SF_(6)degradation path in a-Al_(2)O_(3)packed plasma in the presence of H_(2)O or O_(2).Our experimental results show that both H_(2)O and O_(2)have a synergetic effect with-Al_(2)O_(3)packing on promoting SF_(6)degradation,leading to higher stable gas yields than typical spark or corona discharges.H_(2)O or O_(2)addition promotes SO_(2)or SO_(2)F_(2)selectivity,respectively.Density functional theory(DFT)calculations reveal that SO_(2)generation corresponding with the highest activation barrier is the most critical step toward SF_(6)degradation.Radicals like H and O generated from H_(2)O or O_(2)discharge can significantly promote the degradation process via Eley-Rideal mechanism,affecting key reactions of stable product generation,advancing degradation efficiency.The results of this work could provide insights on further understanding SF_(6)degradation mechanism especially in packed-bed plasma systems. 展开更多
关键词 Degradation mechanism packed-bed plasma RADICALS SF_(6)
原文传递
A structured packed-bed reactor designed for exothermic hydrogenation of acetone 被引量:2
8
作者 Yanjun Duan Min Xu +1 位作者 Xiaoming Zhou Xiulan Huai 《Particuology》 SCIE EI CAS CSCD 2014年第6期125-130,共6页
Fixed-bed reactors randomly packed with catalysts have many disadvantages that may adversely affect the desired chemical reaction.The increasingly used monolithic reactor,in contrast,has many operational advantages;ho... Fixed-bed reactors randomly packed with catalysts have many disadvantages that may adversely affect the desired chemical reaction.The increasingly used monolithic reactor,in contrast,has many operational advantages;however,for a kinetically-controlled reaction,it does not contain sufficient catalyst to sustain the reaction.To address the problems associated with both randomly packed-bed reactor and the monolithic reactor,a structured packed-bed reactor was proposed and mathematical models were built for randomly packed-bed reactor and structured packed-bed reactor.Their respective performances were compared when applied to the exothermic reaction of the isopropanol-acetone-hydrogen chemical heat pump system.The results showed that the structured packed-bed reactor performed better in terms of pressure drop and heat transfer capacity,and had a lower radial temperature gradient,indicating that this reactor had a higher effective heat conductivity.Isopropanol on the catalyst particle surfaces was more concentrated near the tube wall because a wall effect existed in the boundary layer around the particle-wall contact points. 展开更多
关键词 Chemical heat pump Structured packed-bed reactor Acetone hydrogenation CFD simulation
原文传递
Coupled Thermal and Mechanical Dynamic Performances of the Molten Salt Packed-Bed Thermal Energy Storage System 被引量:1
9
作者 HUANG Lijuan DU Baocun LEI Yonggang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1337-1350,共14页
In this paper,the thermal and mechanical dynamic performances of molten salt packed-bed thermal energy storage(TES)system are investigated by coupling Finite Volume Method(FVM)and Finite Element Method(FEM).Firstly,an... In this paper,the thermal and mechanical dynamic performances of molten salt packed-bed thermal energy storage(TES)system are investigated by coupling Finite Volume Method(FVM)and Finite Element Method(FEM).Firstly,an integration model coupling FVM and FEM in packed-bed tank is developed.Particularly,the pore water static pressure caused by the liquid level of molten salt is applied in the coupled method.Based on this model,the dynamic characteristics of thermal and stress distributions are simulated.Finally,the effects of porosity,inlet temperature and velocity on the thermal and stress performances are analyzed.The results indicate that the temperature and stress of the wall increase during the discharging process,and the peak stress occurs at the tank bottom connecting with the ground foundation.The method of increasing porosity is helpful to improve the discharging power,but the plastic failure on the wall would probably occur due to the higher stress level.Increasing inlet temperature has negative influence on the thermal and safety performances,because lower discharging power and higher stress would be produced adversely.Although the lower stress can be achieved when the higher inlet velocity is adopted,the effective discharge time would be decreased significantly. 展开更多
关键词 solar power thermal energy storage packed-bed dynamic performance STRESS
原文传递
STUDIES ON UNIFORM VELOCITY DISTRIBUTION IN CYLINDRICAL VESSELS WITH ANNULAR PACKED-BED
10
作者 Wu, Minquan Huang, Farui +1 位作者 Du, Pin Shu, Zhongming 《Journal of Hydrodynamics》 SCIE EI CSCD 1997年第2期65-69,共5页
The uniform distribution of radial velocities of flow is of great importance for a cylindrical vessel with annular packed-bed (CVAPB). In this paper, a theoretical analysis for producing a uniform radial velocity dist... The uniform distribution of radial velocities of flow is of great importance for a cylindrical vessel with annular packed-bed (CVAPB). In this paper, a theoretical analysis for producing a uniform radial velocity distribution within a vessel is presented and a design method is established for a specially designed conical chock (SDCC). A differential equation for determining the contour size of SDCC is derived. Experimental verification is performed in a test model of CVAPB. The results show that the axial distribution of differential pressures across the packed-bed become uniform for CVAPB with SDCC and the uniformity of radial velocity is improved. 展开更多
关键词 uniform velocity distribution cylindrical vessel annular packed-bed
原文传递
Application of dielectric barrier discharge(DBD) plasma packed with glass and ceramic pellets for SO_2 removal at ambient temperature: optimization and modeling using response surface methodology 被引量:4
11
作者 Niloofar DAMYAR Ali KHAVANIN +2 位作者 Ahmad JONIDI FAFARI Hasan ASILIAN Ramazan MIRZAEI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第10期100-110,共11页
Air pollution is a major health problem in developing countries and has adverse effects on human health and the environment. Non-thermal plasma is an effective air pollution treatment technology. In this research, the... Air pollution is a major health problem in developing countries and has adverse effects on human health and the environment. Non-thermal plasma is an effective air pollution treatment technology. In this research, the performance of a dielectric barrier discharge(DBD) plasma reactor packed with glass and ceramic pellets was evaluated in the removal of SO_2 as a major air pollutant from air in ambient temperature. The response surface methodology was used to evaluate the effect of three key parameters(concentration of gas, gas flow rate, and voltage) as well as their simultaneous effects and interactions on the SO2 removal process. Reduced cubic models were derived to predict the SO_2 removal efficiency(RE) and energy yield(EY). Analysis of variance results showed that the packed-bed reactors(PBRs) studied were more energy efficient and had a high SO2 RE which was at least four times more than that of the non-packed reactor. Moreover, the results showed that the performance of ceramic pellets was better than that of glass pellets in PBRs. This may be due to the porous surface of ceramic pellets which allows the formation of microdischarges in the fine cavities of a porous surface when placed in a plasma discharge zone. The maximum SO_2 RE and EY were obtained at 94% and 0.81 g kWh^(-1),respectively under the optimal conditions of a concentration of gas of 750 ppm, a gas flow rate of 2lmin^(-1), and a voltage of 18 kV, which were achieved by the DBD plasma packed with ceramic pellets. Finally, the results of the model's predictions and the experiments showed good agreement. 展开更多
关键词 sulfur dioxide packed-bed plasma glass pellets ceramic pellets response surface methodology(RSM)
下载PDF
Modelling of a tubular solid oxide fuel cell with different designs of indirect internal reformer 被引量:3
12
作者 P.Kim-Lohsoontorn F.Priyakorn +1 位作者 U.Wetwatana N.Laosiripojana 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期251-263,共13页
The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coa... The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency. 展开更多
关键词 indirect internal reforming solid oxide fuel cell annular-coated wall reformer packed-bed reformer catalytic coated wall reformer catalyticannular reformer
下载PDF
Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer 被引量:2
13
作者 Phavanee Narataruksa Sabaithip Tungkamani +6 位作者 Karn Pana-Suppamassadu Phongsak Keeratiwintakorn Siriluck Nivitchanyong Piyapong Hunpinyo Hussanai Sukkathanyawat Prayut Jiamrittiwong Visarut Nopparat 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第4期435-444,共10页
Recently, Fischer-Tropsch synthesis (FTS) has become an interesting technology because of its potential role in producing biofuels via Biomass- to-Liquids (BTL) processes. In Fischer-Tropsch (FT) section, biomas... Recently, Fischer-Tropsch synthesis (FTS) has become an interesting technology because of its potential role in producing biofuels via Biomass- to-Liquids (BTL) processes. In Fischer-Tropsch (FT) section, biomass-derived syngas, mainly composed of a mixture of carbon monoxide (CO) and hydrogen (H2), is converted into various forms of hydrocarbon products over a catalyst at specified temperature and pressure. Fixed-bed reactors are typically used for these processes as conventional FT reactors. The fixed-bed or packed-bed type reactor has its drawbacks, which are heat transfer limitation, i.e. a hot spot problem involved highly exothermic characteristics of FT reaction, and mass transfer limitation due to the condensation of liquid hydrocarbon products occurred on catalyst surface. This work is initiated to develop a new chemical reactor design in which a better distribution of gaseous reactants and hydrocarbon products could be achieved, and led to higher throughput and conversion. The main goal of the research is the enhancement of a fixed-bed reactor, focusing on the application of KenicsTM static mixer insertion in the tubular packed-bed reactor. Two FTS experiments were carried out using two reactors i.e., with and without static mixer insertion within catalytic beds. The modeled syngas used was a mixed gas composed of H2/CO in 2 : 1 molar ratio that was fed at the rate of 30 mL(STP)·min^- 1 (GHSV ≈ 136 mL·gcat^-1 ·h^-1) into the fixed Ru supported aluminum catalyst bed of weight 13.3 g. The reaction was carried out at 180 ℃ and atmospheric pressure continuously for 36 h for both experiments. Both transient and steady-state conversions (in terms of time on stream) were reported. The results revealed that the steady-state CO conversion for the case using the static mixer was approximately 3.5 times higher than that of the case without static mixer. In both cases, the values of chain growth probability of hydrocarbon products (α) for Fischer-Tropsch synthesis were 0.92 and 0.89 for the case with and without static mixer, respectively. 展开更多
关键词 Fischer-Tropsch synthesis fixed-bed reactor packed-bed reactor static mixer
下载PDF
Effects of packing particles on the partial discharge behavior and the electrical characterization of oxygen PBRs 被引量:1
14
作者 倪思佳 蔡忆昔 +3 位作者 施蕴曦 王为凯 赵楠 卢奕睿 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第1期81-90,共10页
Packed-bed reactors(PBRs)hold great promise for environmental applications,but a deeper understanding of the behavior of plasma discharge within PBRs is required.To this end,a partial-discharge alternative equivalent ... Packed-bed reactors(PBRs)hold great promise for environmental applications,but a deeper understanding of the behavior of plasma discharge within PBRs is required.To this end,a partial-discharge alternative equivalent circuit for PBRs was established in this work.Dielectric particles(glass beads or glass sand)were used to place focus on the effects of the particle size and shape on the partial discharge behavior of the oxygen PBRs.Some electrical characterizations were explored(e.g.the effective dielectric capacitance,partial discharge coefficient,and corrected burning voltage)that may differ from long-standing interpretations.The findings indicate that the suppressive effect of surface discharge on filament discharge is stronger with the decrease of the particle size.For partial discharge,the effective dielectric capacitance is always less than the dielectric capacitance.The corrected burning voltage and partial discharge tendency increase with the decrease of the particle size.As compared to an empty reactor,the average electric field in the PBR was found to be improved by 3–4 times,and the ozone energy efficiency and production were promoted by more than 20%and 15%,respectively.The plasma processing capacity can therefore be improved by choosing a relatively large size or a complex,irregularly-shaped packing material that is suitable for the discharge gap. 展开更多
关键词 packed-bed reactor alternative equivalent circuit partial discharge packing particles OZONE
下载PDF
Plasma propagation in single-particle packed dielectric barrier discharges:joint effects of particle shape and discharge gap
15
作者 朱珉 胡生宇 +2 位作者 张英豪 吴淑群 张潮海 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第6期124-134,共11页
In this work,a single Al_(2)O_(3) particle packed dielectric barrier discharge(DBD)reactor with adjustable discharge gap is built,and the influences of the particle shape(ball and column)and the residual gap between t... In this work,a single Al_(2)O_(3) particle packed dielectric barrier discharge(DBD)reactor with adjustable discharge gap is built,and the influences of the particle shape(ball and column)and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied.Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor.The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge.The length of streamer discharge is proportional to the size of the residual gap,but the number of discharge times of a single voltage cycle shows an opposite trend.Compared to the column,a smooth spherical surface is more conducive to the formation of large and uniform surface discharges.The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball.All in all,the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis. 展开更多
关键词 low-temperature plasma packed-bed dielectric barrier discharge streamer discharge surface discharge plasma catalysis
下载PDF
Study on Temperature Gradients and Protein Enrichment by <i>Aspergillus oryzae</i>in Solid-State Fermentation on Packed Bed Bioreactor Using Jowar (Sorghum) Straw as Substrate
16
作者 Ganesh A. Bathe Vilas S. Patil Ashish S. Chaurasia 《Journal of Sustainable Bioenergy Systems》 2012年第3期33-36,共4页
The packed bed solid state bioreactor designated as PBSSB is constructed in the present study. The experiments are carried out in packed bed bioreactor with jowar straw and inoculated with Aspergillus oryzae. Temperat... The packed bed solid state bioreactor designated as PBSSB is constructed in the present study. The experiments are carried out in packed bed bioreactor with jowar straw and inoculated with Aspergillus oryzae. Temperature gradient has been measured at different axial positions. It is found that the organisms grew rapidly during the period from 20 to 30 h during which heat generation is more. These results are in agreement with other researchers. The fermented jowar straw shows threefold increase in protein content. This can be utilized as high value nutritional feed to animals. 展开更多
关键词 Solid-State Fermentation packed-bed Bioreactor Aspergillus ORYZAE Jowar STRAW Temperature Gradient
下载PDF
Continuous succinic acid production from corn fiber hydrolysate by immobilized Actinobacillus succinogenes in a hollow fiber membrane packed‑bed biofilm reactor
17
作者 Lisbeth Vallecilla‑Yepez Mark RWilkins 《Systems Microbiology and Biomanufacturing》 EI 2023年第4期765-775,共11页
Succinic acid is one of the most useful intermediate chemicals that can be produced in a biorefinery approach.In this study,Actinobacillus succinogenes was immobilized to produce succinic acid using non-detoxified cor... Succinic acid is one of the most useful intermediate chemicals that can be produced in a biorefinery approach.In this study,Actinobacillus succinogenes was immobilized to produce succinic acid using non-detoxified corn fiber hydrolysate(CFH)and a control mimicking the sugars in CFH.Tests were carried out in a hollow fiber membrane packed-bed biofilm reactor(HFM–PBR)operated in a continuous mode.Under steady-state conditions,the bioconversion process was characterized in terms of sugar consumption,succinic acid and other organic acid production.Steady states were obtained at dilution rates of 0.025,0.05,0.075,0.1,0.2,and 0.3 h^(-1).The optimal results were achieved at the dilution rate of 0.05 h^(-1)and recirculation rate of 50 ml/min with a maximum succinic acid concentration,yield and productivity of 31.1 g/L,0.61 g/g and 1.56 g/L h,respectively,when control was used.Succinic acid concentration,yield and productivity of 23.4 g/L,0.51 g/g and 1.17 g/L h,respectively,were obtained when CFH was used.Productivity in the HFM–PBR was between 1.3 and 1.9 times higher than productivities for succinic acid production from CFH stated in the literature.The results demonstrated that immobilized A.succinogenes has the potential for effective conversion of an inexpensive biomass feedstock to succinic acid.Furthermore,the process has the potential to serve as a means for value-added chemical biomanufacturing in an integrated corn biorefinery. 展开更多
关键词 Corn fiber Succinic acid Continuous fermentation Hollow fiber membrane Biofilm packed-bed reactor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部