A novel method of renormalization called Pacman renormalization allows us to study (unicritical) Siegel functions through Pacman-type functions. It has been used to investigate the Siegel parameters with combinatorial...A novel method of renormalization called Pacman renormalization allows us to study (unicritical) Siegel functions through Pacman-type functions. It has been used to investigate the Siegel parameters with combinatorially periodic rotation number in the main cardioid of the Mandelbrot set. It is already known that it can be defined a Pacman renormalization operator such that for Siegel pacmen, with combinatorially periodic rotation numbers, the operator is compact, analytic and has a unique fixed point, at which it is hyperbolic with one-dimensional unstable manifold. In this paper we observe that this Pacman renormalization operator is compact and analytic at any Siegel Pacman or Siegel map with combinatorially bounded rotation number. This allows us to define a renormalization operator on the hybrid classes of the standard Siegel pacmen to which we built its horseshoe where the operator is topologically semiconjugated to the left shift on the space of bi-infinite sequences of natural numbers bounded by some constant.展开更多
文摘A novel method of renormalization called Pacman renormalization allows us to study (unicritical) Siegel functions through Pacman-type functions. It has been used to investigate the Siegel parameters with combinatorially periodic rotation number in the main cardioid of the Mandelbrot set. It is already known that it can be defined a Pacman renormalization operator such that for Siegel pacmen, with combinatorially periodic rotation numbers, the operator is compact, analytic and has a unique fixed point, at which it is hyperbolic with one-dimensional unstable manifold. In this paper we observe that this Pacman renormalization operator is compact and analytic at any Siegel Pacman or Siegel map with combinatorially bounded rotation number. This allows us to define a renormalization operator on the hybrid classes of the standard Siegel pacmen to which we built its horseshoe where the operator is topologically semiconjugated to the left shift on the space of bi-infinite sequences of natural numbers bounded by some constant.