The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and math...The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.展开更多
Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With t...Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.展开更多
This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact so...This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.展开更多
Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergenc...Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.展开更多
The generalized inverse function-valued Padé approximant was defined to solve the integral equations. However, it is difficult to compute the approximants by some high-order determinant formulas. In this paper, t...The generalized inverse function-valued Padé approximant was defined to solve the integral equations. However, it is difficult to compute the approximants by some high-order determinant formulas. In this paper, to simplify computation of the function-valued Padé approximants, an efficient Pfaffian formula for the determinants was extended from the matrix form to the function-valued form. As an important application, a Pfaffian formula of [4/4] type Padé approximant was established.展开更多
In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the ...In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
基金Project supported by the National Key Basic Research Project of China (Grant No 2004CB318000)the National Natural Science Foundation of China (Grant Nos 10771072 and 10735030)Shanghai Leading Academic Discipline Project of China (Grant No B412)
文摘The Adomian decomposition method (ADM) and Pade approximants are combined to solve the well-known Blaszak-Marciniak lattice, which has rich mathematical structures and many important applications in physics and mathematics. In some cases, the truncated series solution of ADM is adequate only in a small region when the exact solution is not reached. To overcome the drawback, the Pade approximants, which have the advantage in turning the polynomials approximation into a rational function, are applied to the series solution to improve the accuracy and enlarge the convergence domain. By using the ADM-Pade technique, the soliton solutions of the Blaszak-Marciniak lattice are constructed with better accuracy and better convergence than by using the ADM alone. Numerical and figurative illustrations show that it is a promising tool for solving nonlinear problems.
基金supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734
文摘Combining Adomian decomposition method (ADM) with Pade approximants, we solve two differentiaidifference equations (DDEs): the relativistic Toda lattice equation and the modified Volterra lattice equation. With the help of symbolic computation Maple, the results obtained by ADM-Pade technique are compared with those obtained by using ADM alone. The numerical results demonstrate that ADM-Pade technique give the approximate solution with faster convergence rate and higher accuracy and relative in larger domain of convergence than using ADM.
文摘This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic(CCE)model.The underlying CCE model lacks a closed-form exact solution.Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties,such as positivity,boundedness,and feasibility.Therefore,the development of structure-preserving semi-analytical approaches is always necessary.This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem.Singularity-free safe Padérational functions approximate the mathematical shape of state variables,while the model’s physical requirements are treated as problem constraints.The primary model of the governing differential equations is imposed to minimize the error between approximate solutions.An evolutionary algorithm,the Genetic Algorithm with Multi-Parent Crossover(GA-MPC),executes the optimization task.The resulting method is the Evolutionary Safe PadéApproximation(ESPA)scheme.The proof of unconditional convergence of the ESPA scheme on the CCE model is supported by numerical simulations.The performance of the ESPA scheme on the CCE model is thoroughly investigated by considering various orders of non-singular Padéapproximants.
文摘Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.
文摘The generalized inverse function-valued Padé approximant was defined to solve the integral equations. However, it is difficult to compute the approximants by some high-order determinant formulas. In this paper, to simplify computation of the function-valued Padé approximants, an efficient Pfaffian formula for the determinants was extended from the matrix form to the function-valued form. As an important application, a Pfaffian formula of [4/4] type Padé approximant was established.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11072168 and 10872141)
文摘In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.