Experiment was conducted for five successiveyears under large undisturbed monolith lysime-ters(2m×2m in square,l m in depth).Thesoil was silty clay loam texture and had a con-tent of total N 1.55 g/kg.The soil wa...Experiment was conducted for five successiveyears under large undisturbed monolith lysime-ters(2m×2m in square,l m in depth).Thesoil was silty clay loam texture and had a con-tent of total N 1.55 g/kg.The soil was flood-ed with penetration rate controlled at approxi-mate 3 mm per day in duration of double-riceseason and laid fallow and natural in winterand spring.Results showed that nitrate was the mainform of nitrogen in percolates.The change of展开更多
Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C est...Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.展开更多
The profile distribution of β-gulcosidase activity in twelve typical paddy soil profiles with high productivity in the Taihu Lake region of China were investigated. Activities of β-gulcosidase in the plow layers wer...The profile distribution of β-gulcosidase activity in twelve typical paddy soil profiles with high productivity in the Taihu Lake region of China were investigated. Activities of β-gulcosidase in the plow layers were in the range of 52.68- 137.02μg PNP g^-1 soil h^-1 with a mean of 89.22μg PNP g^-1 soil h^-1. However, most plow layers ranged from 70 to 110 μg PNP g^-1 soil h^-1. The profile distribution of β-gulcosidase activity in the 12 soil profiles decreased rapidly with soil depth, with activity at the 60 cm depth only about 10% of that in the surface layers (0-15 cm or 0-20 cm). In these soil profiles, β-gulcosidase activity was significantly positively correlated with soll organic carbon and arylsulphatase activity. Meanwhile, a significantly negative correlation was shown between β-gulcosidase activity and soil pH.展开更多
The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated ...The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments:ambient conditions(CKs), CO2 concentration elevated to - 500 μmol/mol(FACE),temperature elevated by ca. 2°C(T) and combined elevation of CO2 concentration and temperature(FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season(p 〈 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m^2·hr) in the FACE,FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem(p 〈 0.05).展开更多
A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nut...A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nutrients stratification and yields of rice and post-rice crops. After flooded paddy field (FPF) was practiced with RNT for a long time, soil profile changed from G to A-P-G, and horizon G was shifted to a deeper position in the profile. Also the proportion of macroaggregate (> 2 mm) increased, whereas the proportion of silt and clay (< 0.053 mm) decreased under RNT, indicating a better soil structure that will prevent erosion. RNT helped to control leaching and significantly improved total N, P, K and organic matter in soil. The highest crop yields were found under RNT system every year, and total crop yields were higher under conventional paddy-upland rotation tillage (CR) than under FPF, except in 2003 and 2006 when serious drought occurred. RNT was proven to be a better tillage method for lowland rice-based cropping system.展开更多
The comprehensive and reliable perception of moisture in a soil profile is essential to irrigation.To establish an efficient method for sensing soil moisture,field trials were conducted to analyze the spatial and temp...The comprehensive and reliable perception of moisture in a soil profile is essential to irrigation.To establish an efficient method for sensing soil moisture,field trials were conducted to analyze the spatial and temporal variations of moisture in a paddy soil profile by using coefficients of variation.The results showed that soil layers at shallow depths undergo more extensive changes in the coefficients of variation.Moisture perception is most sensitive within a depth range of 0-60 cm in the vertical soil profile of a paddy field.By using the clustering algorithm of Euclidean distance,the paddy soil profile was divided into three categories based on soil depth.The first category includes depths ranging from 10-20 cm,the second is from 30-40 cm,and the third is from 50-100 cm.Path analysis indicated that the most sensitive depths for moisture sensing in a paddy soil profile were 20 cm,30 cm,and 50 cm,whereas the most sensitive depths for moisture sensing by time stability analysis were 20 cm,40 cm,and 60 cm.Based on the multiple regression of sensitive depths,the results of quantitative inversion indicated that the time stability analysis results were 0.962 when the(y,y)Coryy of path analysis was 0.980,and the time stability analysis was 0.61 when the root mean square error(RMSE)of path analysis was 0.40.The relative error range between the measured and predicted values of path analysis was less than that of time stability analysis.These findings suggest that it is feasible to effectively sense the moisture of the entire vertical soil profile based on the sensitive depth.The present study has also determined that path analysis is superior to time stability analysis.展开更多
研究了陕北黄绵土,关中(土娄)土与陕南水稻土土壤剖面中硝酸盐的分布与累积,分析了硝酸盐淋移与土壤剖面粘粒含量的关系.结果表明,黄绵土由于粘粒含量少,土壤疏松,氮肥施入土壤后硝化作用速度快,氮素多以硝态氮存在于土壤中,遇到过量的...研究了陕北黄绵土,关中(土娄)土与陕南水稻土土壤剖面中硝酸盐的分布与累积,分析了硝酸盐淋移与土壤剖面粘粒含量的关系.结果表明,黄绵土由于粘粒含量少,土壤疏松,氮肥施入土壤后硝化作用速度快,氮素多以硝态氮存在于土壤中,遇到过量的灌溉或降水,容易引起硝酸盐淋失.在米脂的川道地,施肥2个月后,硝酸盐峰值在50 cm 左右,4个多月后,峰值下移至100 cm 左右,6个月后,该峰值下降到130 cm 左右,一年内,硝酸盐的峰值已经消失,分布在130至 350 cm 之间.因此,在黄绵土地区可以灌溉的川道地,氮素损失的主要途径是硝酸盐淋失.关中(土娄)土,粘粒含量相对较高,硝化作用速度快,但由于在80-120 cm有一粘化层,阻碍了水分与硝酸盐的向下淋移,使得大部分硝酸盐累积在0-100 cm 土层,其累积量占到0-400 cm总累积量的64% ~ 74%,而200-400 cm仅占到7% ~ 13%.而且淋移到100 cm 以下的硝酸盐,也通过反硝化损失了.陕南水稻土,由于深层土壤水饱和,硝酸盐难以向下淋移,氮素主要累积在土壤表层.由于下层土壤长期处于厌气条件,即使淋移到下层的硝酸盐也通过反硝化作用而损失掉了.展开更多
文摘Experiment was conducted for five successiveyears under large undisturbed monolith lysime-ters(2m×2m in square,l m in depth).Thesoil was silty clay loam texture and had a con-tent of total N 1.55 g/kg.The soil was flood-ed with penetration rate controlled at approxi-mate 3 mm per day in duration of double-riceseason and laid fallow and natural in winterand spring.Results showed that nitrate was the mainform of nitrogen in percolates.The change of
文摘Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.
基金Project supported by the National Natural Science Foundation of China (No. 40371066)the National Key Basic Research Support Foundation of China (No.G1999011808).
文摘The profile distribution of β-gulcosidase activity in twelve typical paddy soil profiles with high productivity in the Taihu Lake region of China were investigated. Activities of β-gulcosidase in the plow layers were in the range of 52.68- 137.02μg PNP g^-1 soil h^-1 with a mean of 89.22μg PNP g^-1 soil h^-1. However, most plow layers ranged from 70 to 110 μg PNP g^-1 soil h^-1. The profile distribution of β-gulcosidase activity in the 12 soil profiles decreased rapidly with soil depth, with activity at the 60 cm depth only about 10% of that in the surface layers (0-15 cm or 0-20 cm). In these soil profiles, β-gulcosidase activity was significantly positively correlated with soll organic carbon and arylsulphatase activity. Meanwhile, a significantly negative correlation was shown between β-gulcosidase activity and soil pH.
基金supported by and the Fundamental Research Funds for the National Science Foundation of China (No. 41171238)the Ministry of Science and Technology (No. 2013BAD11B01)+1 种基金the Central Universities (No. KYTZ201404)the Nonprofit Research Foundation for Agriculture (No. 200903003)
文摘The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments:ambient conditions(CKs), CO2 concentration elevated to - 500 μmol/mol(FACE),temperature elevated by ca. 2°C(T) and combined elevation of CO2 concentration and temperature(FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season(p 〈 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m^2·hr) in the FACE,FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem(p 〈 0.05).
基金Project supported by the National Natural Science Foundation of China (No.40501033)the National Key Technologies R&D Program for the 11th Five-Year Plan of China (No.2007BAD87B10)
文摘A tillage method of combining ridge with no-tillage (RNT) was employed in lowland rice-based cropping system to study the long-term effects of RNT on soil profile pattern, soil water stable aggregate distribution, nutrients stratification and yields of rice and post-rice crops. After flooded paddy field (FPF) was practiced with RNT for a long time, soil profile changed from G to A-P-G, and horizon G was shifted to a deeper position in the profile. Also the proportion of macroaggregate (> 2 mm) increased, whereas the proportion of silt and clay (< 0.053 mm) decreased under RNT, indicating a better soil structure that will prevent erosion. RNT helped to control leaching and significantly improved total N, P, K and organic matter in soil. The highest crop yields were found under RNT system every year, and total crop yields were higher under conventional paddy-upland rotation tillage (CR) than under FPF, except in 2003 and 2006 when serious drought occurred. RNT was proven to be a better tillage method for lowland rice-based cropping system.
基金This work was financially supported by the National Key Research and Development Program of China(2016YFD0300607)the Three New Project of Agricultural Machinery in Jiangsu Province(NJ2017-23)+1 种基金the Independent Innovation of Agricultural Science and Technology in Jiangsu Province(SCX(16)1006)The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The comprehensive and reliable perception of moisture in a soil profile is essential to irrigation.To establish an efficient method for sensing soil moisture,field trials were conducted to analyze the spatial and temporal variations of moisture in a paddy soil profile by using coefficients of variation.The results showed that soil layers at shallow depths undergo more extensive changes in the coefficients of variation.Moisture perception is most sensitive within a depth range of 0-60 cm in the vertical soil profile of a paddy field.By using the clustering algorithm of Euclidean distance,the paddy soil profile was divided into three categories based on soil depth.The first category includes depths ranging from 10-20 cm,the second is from 30-40 cm,and the third is from 50-100 cm.Path analysis indicated that the most sensitive depths for moisture sensing in a paddy soil profile were 20 cm,30 cm,and 50 cm,whereas the most sensitive depths for moisture sensing by time stability analysis were 20 cm,40 cm,and 60 cm.Based on the multiple regression of sensitive depths,the results of quantitative inversion indicated that the time stability analysis results were 0.962 when the(y,y)Coryy of path analysis was 0.980,and the time stability analysis was 0.61 when the root mean square error(RMSE)of path analysis was 0.40.The relative error range between the measured and predicted values of path analysis was less than that of time stability analysis.These findings suggest that it is feasible to effectively sense the moisture of the entire vertical soil profile based on the sensitive depth.The present study has also determined that path analysis is superior to time stability analysis.
文摘研究了陕北黄绵土,关中(土娄)土与陕南水稻土土壤剖面中硝酸盐的分布与累积,分析了硝酸盐淋移与土壤剖面粘粒含量的关系.结果表明,黄绵土由于粘粒含量少,土壤疏松,氮肥施入土壤后硝化作用速度快,氮素多以硝态氮存在于土壤中,遇到过量的灌溉或降水,容易引起硝酸盐淋失.在米脂的川道地,施肥2个月后,硝酸盐峰值在50 cm 左右,4个多月后,峰值下移至100 cm 左右,6个月后,该峰值下降到130 cm 左右,一年内,硝酸盐的峰值已经消失,分布在130至 350 cm 之间.因此,在黄绵土地区可以灌溉的川道地,氮素损失的主要途径是硝酸盐淋失.关中(土娄)土,粘粒含量相对较高,硝化作用速度快,但由于在80-120 cm有一粘化层,阻碍了水分与硝酸盐的向下淋移,使得大部分硝酸盐累积在0-100 cm 土层,其累积量占到0-400 cm总累积量的64% ~ 74%,而200-400 cm仅占到7% ~ 13%.而且淋移到100 cm 以下的硝酸盐,也通过反硝化损失了.陕南水稻土,由于深层土壤水饱和,硝酸盐难以向下淋移,氮素主要累积在土壤表层.由于下层土壤长期处于厌气条件,即使淋移到下层的硝酸盐也通过反硝化作用而损失掉了.