The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system ...The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system possesses the Painlevé property in both the principal and secondary branches. Then, the consistent Riccati expansion (CRE) method is applied to the coupled mKdV-BLMP system. As a result, it is CRE solvable for the principal branch while non-CRE solvable for the secondary branch. Finally, starting from the last consistent differential equation in the CRE solvable case, soliton, multiple resonant soliton solutions and soliton-cnoidal wave interaction solutions are constructed explicitly.展开更多
By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distin...By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distinct cases. Moreover, the multi- soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.展开更多
We investigate the Painleve integrabiiity of nonautonomous nonlinear Schr6dinger (NLS) equations with both space-and time-dependent dispersion, nonlinearity, and external potentials. The Painleve analysis is carried...We investigate the Painleve integrabiiity of nonautonomous nonlinear Schr6dinger (NLS) equations with both space-and time-dependent dispersion, nonlinearity, and external potentials. The Painleve analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painleve analyses and/or become unknown new equations.展开更多
A special coupled KdV equation is proved to be the Painleve property by the Kruskal's simplification of WTC method. In order to search new exact solutions of the coupled KdV equation, Hirota's bilinear direct method...A special coupled KdV equation is proved to be the Painleve property by the Kruskal's simplification of WTC method. In order to search new exact solutions of the coupled KdV equation, Hirota's bilinear direct method and the conjugate complex number method of exponential functions are applied to this system. As a result, new analytical eomplexiton and soliton solutions are obtained synchronously in a physical field. Then their structures, time evolution and interaction properties are further discussed graphically.展开更多
The usual (1+1)-dimensional Schwartz Boussinesq equation is extended to the (1+1)-dimensional space-time symmetric form and the general (n+1)-dimensional space-time symmetric form. These extensions are Painle...The usual (1+1)-dimensional Schwartz Boussinesq equation is extended to the (1+1)-dimensional space-time symmetric form and the general (n+1)-dimensional space-time symmetric form. These extensions are Painleve integrable in the sense that they possess the Painleve property. The single soliton solutions and the periodic travelling wave solutions for arbitrary dimensional space-time symmetric form are obtained by the Painleve-Backlund transformation.展开更多
Painleve integrability has been tested for (2+1)D Boussinesq equation with disturbance term using the standard WTC approach after introducing the Kruskai's simplification. New breather solitary solutions depending...Painleve integrability has been tested for (2+1)D Boussinesq equation with disturbance term using the standard WTC approach after introducing the Kruskai's simplification. New breather solitary solutions depending on constant equilibrium solution are obtained by using Extended Homoclinic Test Method. Moreover, the spatiotemporal feature of breather solitary wave is exhibited.展开更多
The one-dimensional optimal system for the Lie symmetry group of the(2+1)-dimensional Wu–Zhan equation is constructed by the general and systematic approach. Based on the optimal system, the complete and inequivalent...The one-dimensional optimal system for the Lie symmetry group of the(2+1)-dimensional Wu–Zhan equation is constructed by the general and systematic approach. Based on the optimal system, the complete and inequivalent symmetry reduction systems are presented in the form of table. It is noteworthy that a new Painlev integrable equation with constant coefficient is in the table besides the classic Boussinesq equation and the steady cas of the Wu–Zhang equation.展开更多
In this article, we propose an alternative approach of the generalized and improved (G'/G)-expansion method and build some new exact traveling wave solutions of three nonlinear evolution equations, namely the Boiti...In this article, we propose an alternative approach of the generalized and improved (G'/G)-expansion method and build some new exact traveling wave solutions of three nonlinear evolution equations, namely the Boiti- Leon-Pempinelle equation, the Pochhammer-Chree equations and the Painleve integrable Burgers equation with free parameters. When the free parameters receive particular values, solitary wave solutions are constructed from the traveling waves. We use the Jacob/elliptic equation as an auxiliary equation in place of the second order linear equation. It is established that the proposed algorithm offers a further influential mathematical tool for constructing exact solutions of nonlinear evolution equations.展开更多
基金Supported by the Natural Science Foundation of Zhejiang Province of China under Grant No LY14A010005
文摘The integrability of the coupled, modified KdV equation and the potential Boiti-Leon-Manna-Pempinelli (mKdV-BLMP) system is investigated using the Painlevé analysis approach. It is shown that this coupled system possesses the Painlevé property in both the principal and secondary branches. Then, the consistent Riccati expansion (CRE) method is applied to the coupled mKdV-BLMP system. As a result, it is CRE solvable for the principal branch while non-CRE solvable for the secondary branch. Finally, starting from the last consistent differential equation in the CRE solvable case, soliton, multiple resonant soliton solutions and soliton-cnoidal wave interaction solutions are constructed explicitly.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11201290 and 71103118)
文摘By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distinct cases. Moreover, the multi- soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.
基金supported by the Kyung Hee University on sabbatical leave in 2010
文摘We investigate the Painleve integrabiiity of nonautonomous nonlinear Schr6dinger (NLS) equations with both space-and time-dependent dispersion, nonlinearity, and external potentials. The Painleve analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painleve analyses and/or become unknown new equations.
文摘A special coupled KdV equation is proved to be the Painleve property by the Kruskal's simplification of WTC method. In order to search new exact solutions of the coupled KdV equation, Hirota's bilinear direct method and the conjugate complex number method of exponential functions are applied to this system. As a result, new analytical eomplexiton and soliton solutions are obtained synchronously in a physical field. Then their structures, time evolution and interaction properties are further discussed graphically.
基金supported by the National Natural Science Foundation of China (Grant No 10575087)the Natural Science Foundation of Zhejiang Province,China (Grant No 102053)
文摘The usual (1+1)-dimensional Schwartz Boussinesq equation is extended to the (1+1)-dimensional space-time symmetric form and the general (n+1)-dimensional space-time symmetric form. These extensions are Painleve integrable in the sense that they possess the Painleve property. The single soliton solutions and the periodic travelling wave solutions for arbitrary dimensional space-time symmetric form are obtained by the Painleve-Backlund transformation.
基金Supported by National Natural Science Foundation of China under Grant Nos. 11061028, 11261049, Yunnan Natural Science Foundation under Grant Nos. 2010CD086 and 2011Y012 and Qujing Normal University Natural Science Foundation under Grant Nos. 2009ZD002 and 2012QN016
文摘Painleve integrability has been tested for (2+1)D Boussinesq equation with disturbance term using the standard WTC approach after introducing the Kruskai's simplification. New breather solitary solutions depending on constant equilibrium solution are obtained by using Extended Homoclinic Test Method. Moreover, the spatiotemporal feature of breather solitary wave is exhibited.
基金Supported by the Global Change Research Program of China under Grant No.2015CB953904National Natural Science Foundation of China under Grant Nos.11375090,11275072 and 11435005+3 种基金Research Fund for the Doctoral Program of Higher Education of China under Grant No.20120076110024the Network Information Physics Calculation of Basic Research Innovation Research Group of China under Grant No.61321064Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No.ZF1213the Zhejiang Provincial Natural Science Foundation of China under Grant No.LY14A010005
文摘The one-dimensional optimal system for the Lie symmetry group of the(2+1)-dimensional Wu–Zhan equation is constructed by the general and systematic approach. Based on the optimal system, the complete and inequivalent symmetry reduction systems are presented in the form of table. It is noteworthy that a new Painlev integrable equation with constant coefficient is in the table besides the classic Boussinesq equation and the steady cas of the Wu–Zhang equation.
文摘In this article, we propose an alternative approach of the generalized and improved (G'/G)-expansion method and build some new exact traveling wave solutions of three nonlinear evolution equations, namely the Boiti- Leon-Pempinelle equation, the Pochhammer-Chree equations and the Painleve integrable Burgers equation with free parameters. When the free parameters receive particular values, solitary wave solutions are constructed from the traveling waves. We use the Jacob/elliptic equation as an auxiliary equation in place of the second order linear equation. It is established that the proposed algorithm offers a further influential mathematical tool for constructing exact solutions of nonlinear evolution equations.