The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framew...The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.展开更多
The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-east...The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326-321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326-276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5-30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO2(47.51-51.47 wt%), Al2O3(11.46-15.55 wt%), ΣFeO(8.27-9.61 wt%), MgO(13.01-15.18 wt%) and CaO(9.13-11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302-1351°C and pressures of 0.92-1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33-45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326-275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related environments locally. The final collision between the North China craton and the South Mongolian microcontinent may have lasted until ca. 230 Ma.展开更多
The uvarovite-andradite and uvarovite-andradite-grossular solid-solution series are rare in nature.The discovery of uvarovite-andradite in serpentinite and rodingite from the ultra-high pressure(UHP)metamorphic belt i...The uvarovite-andradite and uvarovite-andradite-grossular solid-solution series are rare in nature.The discovery of uvarovite-andradite in serpentinite and rodingite from the ultra-high pressure(UHP)metamorphic belt in southwestern Tianshan provided an opportunity to investigate its behavior in the subduction zone.Uvarovite(defined as chromiumgarnet)from serpentinite is homogeneous in a single grain,covering compositions in the uvarovite-andradite solid solution series of Adr_(58-66)Uv_(33-41),with few grossular components.Uvarovite from rodingites contain various Cr_(2)O_(3) contents(1.7-17.9 wt%)and mineral compositions being in the range of Adr_(21-31)Uv_(41-50)Grs_(22-37),Adr_(52-90)Uv_(5-25)Grs_(0-21) and Adr_(19-67)Uv_(3-63)Grs_(13-42).Discontinuous chemical variation of uvarovite from core to rim indicates that uvarovite formed by consuming andradite and chromite,which could provide Ca,Cr,Al and Fe.Raman signals of water were identified for uvarovite from both serpentinite and rodingite,with high water content in uvarovite from serpentinite.The high pressure mineral assemblage,as well as the association with perovskite,indicated that the studied uvarovite from serpentinite and rodingite was formed through high pressure metamorphism,during the subduction zone serpentinization and rodingitization.High alkaline and highly reduced fluids released from serpentinization or rodingitization in the oceanic subduction zone promote the mobility of chromium and enable its long-distance migration.展开更多
The Naga Hills Ophiolite(NHO)belt in the Indo-Myanmar range(IMR)represents a segment of Tethyan oceanic crust and upper mantle that was involved in an eastward convergence and collision of the Indian Plate with the Bu...The Naga Hills Ophiolite(NHO)belt in the Indo-Myanmar range(IMR)represents a segment of Tethyan oceanic crust and upper mantle that was involved in an eastward convergence and collision of the Indian Plate with the Burmese Plate during the Late Cretaceous-Eocene.Here,we present a detailed petrological and geochemical account for the mantle and crustal sections of NHO,northeastern India to address(i)the mantle processes and tectonic regimes involved in their genesis and(ii)their coherence in terms of the thermo-tectonic evolution of Tethyan oceanic crust and upper mantle.The NHO suite comprises well preserved crustal and mantle sections discretely exposed at Moki,Ziphu,Molen,Washelo and Lacham areas.The ultramafic-mafic lithologies of NHO are mineralogically composed of variable proportions of olivine,orthopyroxene,clinopyroxene and plagioclase.The primary igneous textures for the mantle peridotites have been overprinted by extensive serpentinisation whereas the crustal section rocks reflect crystal cumulation in a magma chamber.Chondrite normalised REE profiles for the cumulate peridotite-olivine gabbro-gabbro assemblage constituting the crustal section of NHO show flat to depleted LREE patterns consistent with their generation from depleted MORB-type precursor melt in an extensional tectonic setting,while the mantle peridotites depict U-shaped REE patterns marked by relative enrichment of LREE and HREE over MREE.These features collectively imply a dual role of depleted MORB-type and enriched arc-type mantle components for their genesis with imprints of melt-rock and fluid-rock interactions.Tectonically,studied lithologies from NHO correspond to a boninitic to slab-proximal Island Arc Tholeiite affinity thereby conforming to an intraoceanic supra subduction zone(SSZ)fore-arc regime coherent with the subduction initiation process.The geochemical attributes for the crustal and mantle sections of NHO as mirrored by Zr/Hf,Zr/Sm,Nb/Ta,Zr/Nb,Nb/U,Ba/Nb,Ba/Th,Ba/La and Nd/Hf ratios propound a two-stage petrogenetic process:(i)a depleted fore arc basalt(FAB)type tholeiitic melt parental to the crustal lithologies was extracted from the upwelling asthenospheric mantle at SSZ fore-arc extensional regime thereby rendering a refractory residual upper mantle;(ii)the crust and upper mantle of the SSZ fore arc were progressively refertilised by boninitic melts generated in response to subduction initiation and slab-dehydration.The vestiges of Tethyan oceanic lithosphere preserved in NHO represent an accreted intra-oceanic fore arc crust and upper mantle section which records a transitional geodynamic evolution in a SSZ regime marked by subduction initiation,fore arc extension and arc-continent accretion.展开更多
The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq...The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.展开更多
The annual subduction rate in the South Indian Ocean was calculated by analyzing Simple Ocean Data Assimilation (SODA) outputs in the period of 1950-2008. The subduction rate census for potential density classes sho...The annual subduction rate in the South Indian Ocean was calculated by analyzing Simple Ocean Data Assimilation (SODA) outputs in the period of 1950-2008. The subduction rate census for potential density classes showed a peak corresponding to Indian Ocean subtropical mode water (IOSTMW) in the southwestern part of the South Indian Ocean subtropical gyre. The deeper mixed layer depth, the sharper mixed-layer fronts and the associated relatively faster circulation in the present climatology resulted in a larger lateral induction, which primarily dominants the IOSTMW subduction rate, while with only minor contribution from vertical pumping. Without loss of generality, through careful analysis of the water characteristics in the layer of minimum vertical temperature gradient (LMVTG), the authors suggest that the IOSTMW was identified as a thermostad, with a lateral minimum of low potential vorticity (PV, less than 200× 10^-12 m^-1·s^-1) and a low dT/dz (less than 1.5℃/(100 m)). The IOSTMW within the South Indian Ocean subtropical gyre distributed in the region approximately from 25° to 50° E and from 30° to 39°S. Additionally, the average characteristics (temperature, salinity, potential density) of the mode water were estimated about (16.38 ± 0.29)℃, (35.46 ±0.04), (26.02 ±0.04) ae over the past 60 years.展开更多
Former studies show that the Muztag ophiolite, outcropped in the East Kunlun area of Xinjiang, formed in a supra-subduction zone environment. This study is to gain more information about the type of subduetion zone. T...Former studies show that the Muztag ophiolite, outcropped in the East Kunlun area of Xinjiang, formed in a supra-subduction zone environment. This study is to gain more information about the type of subduetion zone. Through field work, thin section observation and microprobe analysis, petrological and mineralogical characteristics of the metamorphic peridotites of this ophiolite are obtained. Although the olivines of metamorphic peridotites appear in three textures of metamorphic relict, metamorphic recrystallizations and orthopyroxene-melting crystallizations by thin-section observations, they have stable and low Fo range of 87.8- 89.5 by microprobe analysis. The orthopyroxenes show metamorphic relict and melting relict textures, with a low En of 88-90 and a wide range of Al2O3 content, from 2.90 wt% to 5. 13 wt%. The spinels develop anhedral-subhedral textures, with Cr^# (=Cr/(Cr+AI)) focusing on two ranges of 0. 508-0. 723 and 0. 100-0. 118, respectively. Based on these petrological and mineralogical observations, and combined with the era and tectonic setting for the Muztag ophiolite, it can be concluded that the ophiolite formed in a supra-subduction zone where the oceanic crust subducted down to the continental are with a thick continental crust, and resulted from ocean-continent subducion within the Paleotethyan arehiopelagic ocean in the East Kunlun area of Xinjiang.展开更多
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous-Permian stratigraphic sequences and sedimentary environments in southeastern Inner M...In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous-Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous-Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE-NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous-Middle Permian is dominated by llttoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous-Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic melanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic melange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).展开更多
In the eastern part of the Central Asian Orogenic Belt(CAOB) in northeastern(NE) China, scattered outcrops of molasse deposits mark the ending of an orogeny and are crucial for understanding the evolution of the Paleo...In the eastern part of the Central Asian Orogenic Belt(CAOB) in northeastern(NE) China, scattered outcrops of molasse deposits mark the ending of an orogeny and are crucial for understanding the evolution of the Paleo-Asian Ocean(PAO). However, the timing of tectonic events and the relationships among these strata remain controversial. To better constrain these geologic events, a comprehensive study of the detrital zircon U-Pb geochronology and geochemistry of the sandstones of the Kaishantun(KST) Formation and Kedao(KD) Group in eastern Jilin Province, NE China, was conducted. The KST Formation is traditionally considered a molasse deposit. The sandstones display low CIA, PIA and high ICV values and low Th/U and Rb/Sr ratios, which suggest that the rocks were derived from an immature intermediate-felsic igneous source and experienced a simple sedimentary recycling history with relatively weak chemical weathering. LA-ICP-MS U-Pb dating of detrital zircons from two samples of the KST Formation yields ages of 748-252 Ma, suggesting that the KST Formation was deposited between 254.5 Ma and 252 Ma in Late Permian. The zircons were mainly derived from the continental northern part of the North China Craton(NCC). In contrast, the U-Pb dating of detrital zircons from five samples of the KD Group yields ages of 2611-230 Ma, suggesting that the KD samples were deposited in the Early to Middle Triassic(ca. 248-233 Ma). The detrital zircon ages for the KD samples can be divided into groups with peaks at 2.5 Ga, 1.8 Ga, 800-1000 Ma, 500 Ma and 440-360 Ma, which suggest that the samples were derived from bidirectional provenances in the Jiamusi-Khanka Block and the NCC. These new data,combined with previously published results, suggest that at least three orogenic events occurred in central-eastern Jilin Province during the Early Permian(270-262 Ma), Early Triassic(254-248 Ma) and Middle-Late Triassic(242-227 Ma). The final closure of the PAO occurred during 242-227 Ma in the Middle-Late Triassic along the Changchun-Yanji suture zone. The detrital zircon geochronological data clearly record plate convergence and the scissor-like closure of the PAO in the eastern CAOB.展开更多
The giant Central Asian Orogenic Belt is an extensive accretionary orogen,of which the Solonker suture,as a major regional suture,coincides closely with an early Permian paleobiogeographical boundary.This suture is co...The giant Central Asian Orogenic Belt is an extensive accretionary orogen,of which the Solonker suture,as a major regional suture,coincides closely with an early Permian paleobiogeographical boundary.This suture is considered to mark the location of the final closure of the Paleo-Asian Ocean between the North China Craton and the Mongolian Terrane.Although the closure time of the Paleo-Asian Ocean along the Solonker suture has generally been regarded as Late Permian-Early Triassic,uncertainty remains because of a lack of typical collisionrelated features(e.g.,high-grade regional metamorphism and well-developed fold-thrust structures)and a scarcity of outcrops.The present study reports Early Permian foliated gabbros and dikes(288-275 Ma)and Middle-Late Permian undeformed layered gabbros,strongly peraluminous granites,and I-type granites(265-254 Ma)in the Xinhure area along the northern margin of the North China Craton.The Early Permian foliated intrusions have a subduction-related geochemical signature and were derived from partial melting of lithospheric mantle modified by subduction-related melts or fluids at the active margin of the North China Craton.In contrast,the Late Permian undeformed layered gabbros and strongly peraluminous granites were derived from partial melting of lithospheric mantle and middle-upper crust,respectively,triggered by asthenospheric upwelling.Therefore,a transition from an end-compressional to an extensional environment according to a transition from collision termination to postcollision of the North China Craton and Mongolian Terrane may have occurred between 275 Ma and 262 Ma.This time span can be considered as the final closure time of the Paleo-Asian Ocean along the Solonker suture.展开更多
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still ...The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310-254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298-269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298-246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.展开更多
The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North ...The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.展开更多
The Jiutai area is tectonically situated at the eastern segment of the Central Asian Orogenic Belt(CAOB) and is close to the North China Craton(NCC) to the south, serving as an ideal place to investigations of the clo...The Jiutai area is tectonically situated at the eastern segment of the Central Asian Orogenic Belt(CAOB) and is close to the North China Craton(NCC) to the south, serving as an ideal place to investigations of the closure of the PaleoAsian Ocean(PAO). Sandstone samples collected from the Yangjiagou Formation and the Lujiatun Formation in this area have been studied in detail in terms of petrology, geochronology and geochemistry. The maximum depositional time of the Yangjiagou and Lujiatun formations has been constrained to early Middle Triassic(ca. 245 Ma) and middle Late Triassic(ca. 219 Ma), respectively. The Yangjiagou Formation, with a major provenance of dissected island arcs, is dominantly composed of Phanerozoic sediments from Northeastern China(NE China) massifs. The Lujiatun Formation, with major sediments from active continental margins, has a relatively larger proportion of Precambrian sediments, in which the ~1.85 Ga and ~2.5 Ga sediments are typical of the crystalline basements of the NCC and NE China massifs, which were uplifted and eroded during the closure of the PAO. Besides, both formations show the enrichment in LREEs and the depletion in HREEs, the common Eu negative anomalies, and trace element contents similar to that of the upper continental crust. Based on the provenance analysis of these two formations, the final closure time of the PAO in this area is constrained as from the early Middle Triassic(ca. 245 Ma) to the middle Late Triassic(ca. 219 Ma).展开更多
The Changchun–Yanji suture zone(CYSZ) in NE China is considered as the suture between the North China Craton(NCC) and Central Asian Orogenic Belt(CAOB). The geochronology, geochemistry and Sr-NdHf isotopes of Early–...The Changchun–Yanji suture zone(CYSZ) in NE China is considered as the suture between the North China Craton(NCC) and Central Asian Orogenic Belt(CAOB). The geochronology, geochemistry and Sr-NdHf isotopes of Early–Middle Triassic adakitic plutions from the CYSZ, are presented in this paper to discuss their petrogenesis and tectonic setting, as well as to constrain the timing and style of the Paleo-Asian Ocean's final closure. In Early Triassic, the Dayushan pluton(ca. 250 Ma) from western CYSZ has negative ε_(Nd)(t) values, bidirectional provenances(NCC and CAOB) of ε_(Hf)(t), which are formed in a collision tectonic setting. In contrast, in eastern CYSZ, the early Triassic samples in Liangshan(ca. 242 Ma) were high Mg~# values, positive ε_(Nd)(t), single provenances(CAOB) of ε_(Hf)(t) resulting from a subduction setting. In the Middle Triassic, the Atype granites in western CYSZ are found in previous studies representing a post-collisional extensional environment, whereas syn-collisional Lianyanfeng granites(ca. 237 Ma) in eastern CYSZ with low ISr and large scale ε_(Nd)(t) and ε_(Hf)(t) values from bidirectional provenances(NCC and CAOB), represent a collisional setting. The Paleo-Asian Ocean's occurred in a scissor-like fashion along the CYSZ during the Triassic period.展开更多
The response of the mixed layer depth(MLD)and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models.Compared with the present climate in the 9 models,the respon...The response of the mixed layer depth(MLD)and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models.Compared with the present climate in the 9 models,the response of the MLD in the subtropical Northeast Pacific to the increased radiation forcing is spatially nonuniform,with the maximum shoaling about 50 m in the ensemble mean result.The inter-model differences of MLD change are non-negligible,which depend on the various dominated mechanisms.On the north of the MLD front,MLD shallows largely and is influenced by Ekman pumping,heat flux,and upper-ocean cold advection changes.On the south of the MLD front,MLD changes a little in the warmer climate,which is mainly due to the upper-ocean warm advection change.As a result,the MLD front intensity weakens obviously from 0.24 m/km to0.15 m/km(about 33.9%)in the ensemble mean,not only due to the maximum of MLD shoaling but also dependent on the MLD non-uniform spatial variability.The spatially non-uniform decrease of the subduction rate is primarily dominated by the lateral induction reduction(about 85%in ensemble mean)due to the significant weakening of the MLD front.This research indicates that the ocean advection change impacts the MLD spatially non-uniform change greatly,and then plays an important role in the response of the MLD front and the subduction process to global warming.展开更多
The Duolong mineral district in western Tibet is one of the largest porphyry Cu–Au deposit fields with significant metallogenic potential in China.Its tectonic environment relevant to Early Cretaceous Cu–Au minerali...The Duolong mineral district in western Tibet is one of the largest porphyry Cu–Au deposit fields with significant metallogenic potential in China.Its tectonic environment relevant to Early Cretaceous Cu–Au mineralization remains controversial.Here we report new whole-rock major and trace element,and Sr-Nd-Hf-Pb isotopic data for the newly discovered basalt in the Nadun area,Duolong mineral district,to decipher their genesis and further constrain the tectonic environment.A contemporaneous rhyolite sample interbedded with the basalt in the lower part of the volcanic section in the Nadun area yields an LA-ICP-MS zircon U–Pb age of 122.5±1.2 Ma.The basalt samples exhibit high-K calc-alkaline/shoshonite properties and are enriched in high field strength elements,e.g.,high Ti O_(2)(1.43–1.79 wt.%)and Nb(14.6–19.5 ppm)contents,with high Nb/La ratios(0.4–0.6),which are compositionally comparable to those of Nb-enriched arc basalts(NEABs).The(^(87) Sr/^(86) Sr)iratios of 0.7052 to 0.7056,negative eNd(t)(-0.7 to-0.2)and eHf(t)values(+6.0 to+6.5),and high(^(206) Pb/^(204)Pb)i,(^(207) Pb/^(204)Pb)i,(^(208) Pb/^(204)Pb)iand ratios(18.522 to 18.561,15.641 to 15.645 and 38.679 to 38.730,respectively)suggest that the Nadun NEABs are more enriched than those of the island arc basalts(IABs)in the area.The slightly enriched radiogenic isotopes for the Nadun NEABs indicate that the subducting sediments play an important role in the source.Furthermore,their high Nb,Ti,and Cu contents indicate that the source mantle wedge was metasomatized by slab melts.The Nadun NEAB and other coeval magmatic rocks in the Duolong mineral district,including adakite,OIB-like basalt,MORB-type basalt,A-type rhyolite,and common IAB,are typical rock assemblages of ridge subduction.We infer that the Duolong mineral district were formed by ridge subduction in the Early Cretaceous.展开更多
The subduction factories in convergent plate margins exert crucial control on recycling terrestrial components and returning to the overlying crust. The Nd and Hf isotopic systems provide potential tracers to evaluate...The subduction factories in convergent plate margins exert crucial control on recycling terrestrial components and returning to the overlying crust. The Nd and Hf isotopic systems provide potential tracers to evaluate these processes. Here we present a case where these isotopic systems are decoupled in a suite of granites from the Chinese Altai, showing a wide range of εHf(t) values(from -4.7 to +10.8) in contrast to a limited range of εNd(t) values(from -5.8 to -1.9). The zircon xenocrysts occurring frequently in these rocks show markedly negative εHf(t) values(from -34.3 to -6.5) and positive d7 Li values(from +12.5 to +18.2). We propose a model to explain the observed relationship between residual zircon and Nde Hf isotope decoupling. We suggest that the Altai granites originated from partial melting of subducted slab components under relatively low temperature conditions which aided the residual zircon from oceanic sediments to inherit and retain a significant amount of177 Hf in the source, thereby elevating the^(176) Hf/^(177) Hf ratio of the melt, and decoupling from the^(143) Nd/^(144) Nd ratio during the subsequent magmatic processes. Our study illustrates a case where sediment recycling in subduction zone contributes to decoupling of Nd and Hf isotopic systems, with former providing a more reliable estimate of the source characteristics of granitic magmas.展开更多
Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches ha...Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches have discussed about the evolution of the Paleo-Asian Ocean(PAO)in the eastern CAOB.However,展开更多
This study focuses on the geology,geochemistry,zircon U-Pb geochronology and tectonic settings of the three types of seamount basalts from the Xingshuwa subduction accretionary complex in the Xar Moron area,eastern ma...This study focuses on the geology,geochemistry,zircon U-Pb geochronology and tectonic settings of the three types of seamount basalts from the Xingshuwa subduction accretionary complex in the Xar Moron area,eastern margin of the Central Asian Orogenic Belt(CAOB).The seamount remnants are composed of carbonate’cap’sediments,large volumes of pillow and massive basalts,carbonate breccia slope facies and radiolarian cherts.Group 1 basalts are characterized by high contents of P2 O5 and TiO2 with alkaline affinity and LREE enrichment,indicating that they are derived from intraplate magma.Group 2 basalts display N-MORB LREE depletion patterns,indicating that they were formed at a mid-ocean ridge.Group 3 basalts have shown distinct Nb depletion and high Th/Yb ratios,indicating that they were generated in an island arc tectonic setting.The zircon U-Pb age of Group 1 basalt sample XWT18-131 is 576.4±9.4 Ma,suggesting that the oceanic island seamount was the product of intraplate magmatism related to a mantle plume or’hot spot’in the late Neoproterozoic.The zircon U-Pb age of Group 2 basalt sample XWT18-132 is 483±22 Ma,indicating that the Paleo-Asian Ocean(PAO)was continuously expanding in the Early Ordovician.The zircon U-Pb age of Group 3 basalt sample XWT18-101 is 240.5±8.2 Ma,suggesting that this area underwent the evolutionary path of ocean-continent transition,developing towards continentalization during the Middle Triassic.Thus,we believe that there was both mantle plume-related intraplate magmatism and intraoceanic subduction during the evolution of the PAO,the CAOB possibly being an evolutionary model of an intraoceanic subduction and mantle plume magmatism complex.展开更多
Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous t...Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41872056)。
文摘The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.
基金funded by grants from the National Key R&D Program of China (2016YFC0600403, 2017YFC0601206)the National Natural Science Foundation of China (41872063, 41930215, 41520104003, 41888101)+1 种基金the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSWSYS012)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL170404, CUG160232)
文摘The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326-321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326-276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5-30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO2(47.51-51.47 wt%), Al2O3(11.46-15.55 wt%), ΣFeO(8.27-9.61 wt%), MgO(13.01-15.18 wt%) and CaO(9.13-11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302-1351°C and pressures of 0.92-1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33-45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326-275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related environments locally. The final collision between the North China craton and the South Mongolian microcontinent may have lasted until ca. 230 Ma.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41872067,41972064,41630207,41720104009,41703053)Project of the Chinese Geological Survey(Grant Nos.DD20190006,DD20190060)the Foundation of the Chinese Academy of Geological Sciences(Grant Nos.J1901-9,J1901-31,J1903)。
文摘The uvarovite-andradite and uvarovite-andradite-grossular solid-solution series are rare in nature.The discovery of uvarovite-andradite in serpentinite and rodingite from the ultra-high pressure(UHP)metamorphic belt in southwestern Tianshan provided an opportunity to investigate its behavior in the subduction zone.Uvarovite(defined as chromiumgarnet)from serpentinite is homogeneous in a single grain,covering compositions in the uvarovite-andradite solid solution series of Adr_(58-66)Uv_(33-41),with few grossular components.Uvarovite from rodingites contain various Cr_(2)O_(3) contents(1.7-17.9 wt%)and mineral compositions being in the range of Adr_(21-31)Uv_(41-50)Grs_(22-37),Adr_(52-90)Uv_(5-25)Grs_(0-21) and Adr_(19-67)Uv_(3-63)Grs_(13-42).Discontinuous chemical variation of uvarovite from core to rim indicates that uvarovite formed by consuming andradite and chromite,which could provide Ca,Cr,Al and Fe.Raman signals of water were identified for uvarovite from both serpentinite and rodingite,with high water content in uvarovite from serpentinite.The high pressure mineral assemblage,as well as the association with perovskite,indicated that the studied uvarovite from serpentinite and rodingite was formed through high pressure metamorphism,during the subduction zone serpentinization and rodingitization.High alkaline and highly reduced fluids released from serpentinization or rodingitization in the oceanic subduction zone promote the mobility of chromium and enable its long-distance migration.
基金the funds from Department of Science and Technology,Govt.of India under ECR/2018/000309 project。
文摘The Naga Hills Ophiolite(NHO)belt in the Indo-Myanmar range(IMR)represents a segment of Tethyan oceanic crust and upper mantle that was involved in an eastward convergence and collision of the Indian Plate with the Burmese Plate during the Late Cretaceous-Eocene.Here,we present a detailed petrological and geochemical account for the mantle and crustal sections of NHO,northeastern India to address(i)the mantle processes and tectonic regimes involved in their genesis and(ii)their coherence in terms of the thermo-tectonic evolution of Tethyan oceanic crust and upper mantle.The NHO suite comprises well preserved crustal and mantle sections discretely exposed at Moki,Ziphu,Molen,Washelo and Lacham areas.The ultramafic-mafic lithologies of NHO are mineralogically composed of variable proportions of olivine,orthopyroxene,clinopyroxene and plagioclase.The primary igneous textures for the mantle peridotites have been overprinted by extensive serpentinisation whereas the crustal section rocks reflect crystal cumulation in a magma chamber.Chondrite normalised REE profiles for the cumulate peridotite-olivine gabbro-gabbro assemblage constituting the crustal section of NHO show flat to depleted LREE patterns consistent with their generation from depleted MORB-type precursor melt in an extensional tectonic setting,while the mantle peridotites depict U-shaped REE patterns marked by relative enrichment of LREE and HREE over MREE.These features collectively imply a dual role of depleted MORB-type and enriched arc-type mantle components for their genesis with imprints of melt-rock and fluid-rock interactions.Tectonically,studied lithologies from NHO correspond to a boninitic to slab-proximal Island Arc Tholeiite affinity thereby conforming to an intraoceanic supra subduction zone(SSZ)fore-arc regime coherent with the subduction initiation process.The geochemical attributes for the crustal and mantle sections of NHO as mirrored by Zr/Hf,Zr/Sm,Nb/Ta,Zr/Nb,Nb/U,Ba/Nb,Ba/Th,Ba/La and Nd/Hf ratios propound a two-stage petrogenetic process:(i)a depleted fore arc basalt(FAB)type tholeiitic melt parental to the crustal lithologies was extracted from the upwelling asthenospheric mantle at SSZ fore-arc extensional regime thereby rendering a refractory residual upper mantle;(ii)the crust and upper mantle of the SSZ fore arc were progressively refertilised by boninitic melts generated in response to subduction initiation and slab-dehydration.The vestiges of Tethyan oceanic lithosphere preserved in NHO represent an accreted intra-oceanic fore arc crust and upper mantle section which records a transitional geodynamic evolution in a SSZ regime marked by subduction initiation,fore arc extension and arc-continent accretion.
基金jointly supported by the National Natural Science Foundation of China (41802093)the National Key Research and Development Program of China (2017YFC0601201 and 2018YFC0604002)+2 种基金the Project of Xinjiang Bureau of Geology and Mineral Resources (2011BAB06B03-3)the Project of China Geological Survey (DD20190405 and DD20190406)the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (2021qntd23).
文摘The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.
基金The National Natural Science Foundation of China under contract Nos 41276011 and 41221063the Research Project of Chinese Ministry of Education under contract No.113041Athe Global Change and Air-Sea Interaction under contract under contract No.GASI-03-01-01-05
文摘The annual subduction rate in the South Indian Ocean was calculated by analyzing Simple Ocean Data Assimilation (SODA) outputs in the period of 1950-2008. The subduction rate census for potential density classes showed a peak corresponding to Indian Ocean subtropical mode water (IOSTMW) in the southwestern part of the South Indian Ocean subtropical gyre. The deeper mixed layer depth, the sharper mixed-layer fronts and the associated relatively faster circulation in the present climatology resulted in a larger lateral induction, which primarily dominants the IOSTMW subduction rate, while with only minor contribution from vertical pumping. Without loss of generality, through careful analysis of the water characteristics in the layer of minimum vertical temperature gradient (LMVTG), the authors suggest that the IOSTMW was identified as a thermostad, with a lateral minimum of low potential vorticity (PV, less than 200× 10^-12 m^-1·s^-1) and a low dT/dz (less than 1.5℃/(100 m)). The IOSTMW within the South Indian Ocean subtropical gyre distributed in the region approximately from 25° to 50° E and from 30° to 39°S. Additionally, the average characteristics (temperature, salinity, potential density) of the mode water were estimated about (16.38 ± 0.29)℃, (35.46 ±0.04), (26.02 ±0.04) ae over the past 60 years.
文摘Former studies show that the Muztag ophiolite, outcropped in the East Kunlun area of Xinjiang, formed in a supra-subduction zone environment. This study is to gain more information about the type of subduetion zone. Through field work, thin section observation and microprobe analysis, petrological and mineralogical characteristics of the metamorphic peridotites of this ophiolite are obtained. Although the olivines of metamorphic peridotites appear in three textures of metamorphic relict, metamorphic recrystallizations and orthopyroxene-melting crystallizations by thin-section observations, they have stable and low Fo range of 87.8- 89.5 by microprobe analysis. The orthopyroxenes show metamorphic relict and melting relict textures, with a low En of 88-90 and a wide range of Al2O3 content, from 2.90 wt% to 5. 13 wt%. The spinels develop anhedral-subhedral textures, with Cr^# (=Cr/(Cr+AI)) focusing on two ranges of 0. 508-0. 723 and 0. 100-0. 118, respectively. Based on these petrological and mineralogical observations, and combined with the era and tectonic setting for the Muztag ophiolite, it can be concluded that the ophiolite formed in a supra-subduction zone where the oceanic crust subducted down to the continental are with a thick continental crust, and resulted from ocean-continent subducion within the Paleotethyan arehiopelagic ocean in the East Kunlun area of Xinjiang.
基金financially supported by the China Geological Survey(Grant No.12120115070302, 121201102000150009 and 12120115070301)
文摘In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous-Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous-Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE-NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous-Middle Permian is dominated by llttoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous-Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic melanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic melange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 41602110, 41372108 and 41502064)the Taishan Scholar Talent Team Support Plan for Advantaged & Unique Discipline Areas+3 种基金the Qingdao Postdoctoral Applied Research Project (Grant No. 2015193)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2017RCJJ029)the SDUST Research Fund (Grant No. 2015TDJH101)Major Scientific and Technological Innovation Projects of Shandong province (Grants Nos. 2017CXGC1602 and 2017CXGC1603)
文摘In the eastern part of the Central Asian Orogenic Belt(CAOB) in northeastern(NE) China, scattered outcrops of molasse deposits mark the ending of an orogeny and are crucial for understanding the evolution of the Paleo-Asian Ocean(PAO). However, the timing of tectonic events and the relationships among these strata remain controversial. To better constrain these geologic events, a comprehensive study of the detrital zircon U-Pb geochronology and geochemistry of the sandstones of the Kaishantun(KST) Formation and Kedao(KD) Group in eastern Jilin Province, NE China, was conducted. The KST Formation is traditionally considered a molasse deposit. The sandstones display low CIA, PIA and high ICV values and low Th/U and Rb/Sr ratios, which suggest that the rocks were derived from an immature intermediate-felsic igneous source and experienced a simple sedimentary recycling history with relatively weak chemical weathering. LA-ICP-MS U-Pb dating of detrital zircons from two samples of the KST Formation yields ages of 748-252 Ma, suggesting that the KST Formation was deposited between 254.5 Ma and 252 Ma in Late Permian. The zircons were mainly derived from the continental northern part of the North China Craton(NCC). In contrast, the U-Pb dating of detrital zircons from five samples of the KD Group yields ages of 2611-230 Ma, suggesting that the KD samples were deposited in the Early to Middle Triassic(ca. 248-233 Ma). The detrital zircon ages for the KD samples can be divided into groups with peaks at 2.5 Ga, 1.8 Ga, 800-1000 Ma, 500 Ma and 440-360 Ma, which suggest that the samples were derived from bidirectional provenances in the Jiamusi-Khanka Block and the NCC. These new data,combined with previously published results, suggest that at least three orogenic events occurred in central-eastern Jilin Province during the Early Permian(270-262 Ma), Early Triassic(254-248 Ma) and Middle-Late Triassic(242-227 Ma). The final closure of the PAO occurred during 242-227 Ma in the Middle-Late Triassic along the Changchun-Yanji suture zone. The detrital zircon geochronological data clearly record plate convergence and the scissor-like closure of the PAO in the eastern CAOB.
基金supported by the National Natural Science Foundation of China(Grant Nos.41402042,41002064)Fundamental Research Funds for the Central Universities(Grant Nos.310827172006,300102278402)Geological investigation work project of China Geological Survey(No.12120115069701)。
文摘The giant Central Asian Orogenic Belt is an extensive accretionary orogen,of which the Solonker suture,as a major regional suture,coincides closely with an early Permian paleobiogeographical boundary.This suture is considered to mark the location of the final closure of the Paleo-Asian Ocean between the North China Craton and the Mongolian Terrane.Although the closure time of the Paleo-Asian Ocean along the Solonker suture has generally been regarded as Late Permian-Early Triassic,uncertainty remains because of a lack of typical collisionrelated features(e.g.,high-grade regional metamorphism and well-developed fold-thrust structures)and a scarcity of outcrops.The present study reports Early Permian foliated gabbros and dikes(288-275 Ma)and Middle-Late Permian undeformed layered gabbros,strongly peraluminous granites,and I-type granites(265-254 Ma)in the Xinhure area along the northern margin of the North China Craton.The Early Permian foliated intrusions have a subduction-related geochemical signature and were derived from partial melting of lithospheric mantle modified by subduction-related melts or fluids at the active margin of the North China Craton.In contrast,the Late Permian undeformed layered gabbros and strongly peraluminous granites were derived from partial melting of lithospheric mantle and middle-upper crust,respectively,triggered by asthenospheric upwelling.Therefore,a transition from an end-compressional to an extensional environment according to a transition from collision termination to postcollision of the North China Craton and Mongolian Terrane may have occurred between 275 Ma and 262 Ma.This time span can be considered as the final closure time of the Paleo-Asian Ocean along the Solonker suture.
基金funded by grants from the National Key R&D Program of China (2016YFC0600403, 2017YFC0601206)the National Natural Science Foundation of China (41872063, 41520104003, 41888101)+1 种基金the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-SYS012)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL170404, CUG160232)
文摘The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 423 Ma and was deposited in a back-arc basin with an early marine transgression during extension and a late marine regression during contraction. The formation also crops out locally in the Baolidao zone with a main zircon age peak of 467 Ma and a minor peak of 359 Ma, and suggests it formed as a marine transgression sedimentary sequence in a restricted extensional basin and followed by a marine regressive event. Two obvious zircon age peaks of 444 Ma and 280 Ma in the Solonker zone and 435 Ma and 274 Ma in Ondor Sum are retrieved from the Zhesi Formation. This suggests as a result of the gradual closure of the Paleo-Asian Ocean a narrow ocean sedimentary environment with marine regressive sedimentary sequences occupied the Solonker and Ondor Sum zones during the middle Permian. A restricted ocean is suggested by the Permian strata in the Bainaimiao zone. Early Paleozoic subduction until ca. 381 Ma and renewed subduction during ca. 310-254 Ma accompanied by the opening and closure of a back-arc basin during ca. 298-269 Ma occurred in the northern accretionary zone. In contrast, the southern accretionary zone documented early Paleozoic subduction until ca. 400 Ma and a renewed subduction during ca. 298-246 Ma. The final closure of the Paleo-Asian ocean therefore lasted at least until the early Triassic and ended with the formation of the Solonker suture zone.
基金Supported by the National Natural Science Foundation of China (Nos. 40906005, 40830106, 40730953, GYHY201106017)the National Basic Research Program of China (973 Program) (No. 2010CB428504)the National Key Technologies Research and Development Program of China (No. 2009BAC51B01)
文摘The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.
基金financially co-supported by the National Key R&D Program of China (Grant No. 2017YFC0601401 and 2017YFC0601300-01)Self-determined Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, China (Grant No. DBY–ZZ–18–09)
文摘The Jiutai area is tectonically situated at the eastern segment of the Central Asian Orogenic Belt(CAOB) and is close to the North China Craton(NCC) to the south, serving as an ideal place to investigations of the closure of the PaleoAsian Ocean(PAO). Sandstone samples collected from the Yangjiagou Formation and the Lujiatun Formation in this area have been studied in detail in terms of petrology, geochronology and geochemistry. The maximum depositional time of the Yangjiagou and Lujiatun formations has been constrained to early Middle Triassic(ca. 245 Ma) and middle Late Triassic(ca. 219 Ma), respectively. The Yangjiagou Formation, with a major provenance of dissected island arcs, is dominantly composed of Phanerozoic sediments from Northeastern China(NE China) massifs. The Lujiatun Formation, with major sediments from active continental margins, has a relatively larger proportion of Precambrian sediments, in which the ~1.85 Ga and ~2.5 Ga sediments are typical of the crystalline basements of the NCC and NE China massifs, which were uplifted and eroded during the closure of the PAO. Besides, both formations show the enrichment in LREEs and the depletion in HREEs, the common Eu negative anomalies, and trace element contents similar to that of the upper continental crust. Based on the provenance analysis of these two formations, the final closure time of the PAO in this area is constrained as from the early Middle Triassic(ca. 245 Ma) to the middle Late Triassic(ca. 219 Ma).
基金Project Grant Nos. DD20190370 and DD20221645 which derived from the China Geological Survey funded for this article。
文摘The Changchun–Yanji suture zone(CYSZ) in NE China is considered as the suture between the North China Craton(NCC) and Central Asian Orogenic Belt(CAOB). The geochronology, geochemistry and Sr-NdHf isotopes of Early–Middle Triassic adakitic plutions from the CYSZ, are presented in this paper to discuss their petrogenesis and tectonic setting, as well as to constrain the timing and style of the Paleo-Asian Ocean's final closure. In Early Triassic, the Dayushan pluton(ca. 250 Ma) from western CYSZ has negative ε_(Nd)(t) values, bidirectional provenances(NCC and CAOB) of ε_(Hf)(t), which are formed in a collision tectonic setting. In contrast, in eastern CYSZ, the early Triassic samples in Liangshan(ca. 242 Ma) were high Mg~# values, positive ε_(Nd)(t), single provenances(CAOB) of ε_(Hf)(t) resulting from a subduction setting. In the Middle Triassic, the Atype granites in western CYSZ are found in previous studies representing a post-collisional extensional environment, whereas syn-collisional Lianyanfeng granites(ca. 237 Ma) in eastern CYSZ with low ISr and large scale ε_(Nd)(t) and ε_(Hf)(t) values from bidirectional provenances(NCC and CAOB), represent a collisional setting. The Paleo-Asian Ocean's occurred in a scissor-like fashion along the CYSZ during the Triassic period.
基金The National Natural Science Foundation of China under contract No.41606217the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting under contract No.LOMF1702+3 种基金the Open Fund of Key Laboratory for Polar Science,Polar Research Institute of ChinaMinistry of Natural Resources under contract No.KP201702the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCW1903the Natural Science Foundation of Jiangsu Province under contract No.BK20191405。
文摘The response of the mixed layer depth(MLD)and subduction rate in the subtropical Northeast Pacific to global warming is investigated based on 9 CMIP5 models.Compared with the present climate in the 9 models,the response of the MLD in the subtropical Northeast Pacific to the increased radiation forcing is spatially nonuniform,with the maximum shoaling about 50 m in the ensemble mean result.The inter-model differences of MLD change are non-negligible,which depend on the various dominated mechanisms.On the north of the MLD front,MLD shallows largely and is influenced by Ekman pumping,heat flux,and upper-ocean cold advection changes.On the south of the MLD front,MLD changes a little in the warmer climate,which is mainly due to the upper-ocean warm advection change.As a result,the MLD front intensity weakens obviously from 0.24 m/km to0.15 m/km(about 33.9%)in the ensemble mean,not only due to the maximum of MLD shoaling but also dependent on the MLD non-uniform spatial variability.The spatially non-uniform decrease of the subduction rate is primarily dominated by the lateral induction reduction(about 85%in ensemble mean)due to the significant weakening of the MLD front.This research indicates that the ocean advection change impacts the MLD spatially non-uniform change greatly,and then plays an important role in the response of the MLD front and the subduction process to global warming.
基金supported by the National Natural Science Foundation of China(Grant Nos.42002235,41803002)the National Key R&D Program of China(2016YFC0600408)+3 种基金the China Postdoctoral Science Foundation(Grant Nos.2019M652495,2018M642708)the Taishan Scholar Program of Shandong(ts201712075)the Ao Shan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology(2017ASTCP-OS07)the Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.JCZX202026)。
文摘The Duolong mineral district in western Tibet is one of the largest porphyry Cu–Au deposit fields with significant metallogenic potential in China.Its tectonic environment relevant to Early Cretaceous Cu–Au mineralization remains controversial.Here we report new whole-rock major and trace element,and Sr-Nd-Hf-Pb isotopic data for the newly discovered basalt in the Nadun area,Duolong mineral district,to decipher their genesis and further constrain the tectonic environment.A contemporaneous rhyolite sample interbedded with the basalt in the lower part of the volcanic section in the Nadun area yields an LA-ICP-MS zircon U–Pb age of 122.5±1.2 Ma.The basalt samples exhibit high-K calc-alkaline/shoshonite properties and are enriched in high field strength elements,e.g.,high Ti O_(2)(1.43–1.79 wt.%)and Nb(14.6–19.5 ppm)contents,with high Nb/La ratios(0.4–0.6),which are compositionally comparable to those of Nb-enriched arc basalts(NEABs).The(^(87) Sr/^(86) Sr)iratios of 0.7052 to 0.7056,negative eNd(t)(-0.7 to-0.2)and eHf(t)values(+6.0 to+6.5),and high(^(206) Pb/^(204)Pb)i,(^(207) Pb/^(204)Pb)i,(^(208) Pb/^(204)Pb)iand ratios(18.522 to 18.561,15.641 to 15.645 and 38.679 to 38.730,respectively)suggest that the Nadun NEABs are more enriched than those of the island arc basalts(IABs)in the area.The slightly enriched radiogenic isotopes for the Nadun NEABs indicate that the subducting sediments play an important role in the source.Furthermore,their high Nb,Ti,and Cu contents indicate that the source mantle wedge was metasomatized by slab melts.The Nadun NEAB and other coeval magmatic rocks in the Duolong mineral district,including adakite,OIB-like basalt,MORB-type basalt,A-type rhyolite,and common IAB,are typical rock assemblages of ridge subduction.We infer that the Duolong mineral district were formed by ridge subduction in the Early Cretaceous.
基金financially supported by the National Natural Science Foundation of China(Grant No. 41502209)the Chinese State 973 Project (Grant No.2015CB250901)the Science Foundation of China University ofPetroleum, Beijing (Grant No. 2462014YJRC031)
文摘The subduction factories in convergent plate margins exert crucial control on recycling terrestrial components and returning to the overlying crust. The Nd and Hf isotopic systems provide potential tracers to evaluate these processes. Here we present a case where these isotopic systems are decoupled in a suite of granites from the Chinese Altai, showing a wide range of εHf(t) values(from -4.7 to +10.8) in contrast to a limited range of εNd(t) values(from -5.8 to -1.9). The zircon xenocrysts occurring frequently in these rocks show markedly negative εHf(t) values(from -34.3 to -6.5) and positive d7 Li values(from +12.5 to +18.2). We propose a model to explain the observed relationship between residual zircon and Nde Hf isotope decoupling. We suggest that the Altai granites originated from partial melting of subducted slab components under relatively low temperature conditions which aided the residual zircon from oceanic sediments to inherit and retain a significant amount of177 Hf in the source, thereby elevating the^(176) Hf/^(177) Hf ratio of the melt, and decoupling from the^(143) Nd/^(144) Nd ratio during the subsequent magmatic processes. Our study illustrates a case where sediment recycling in subduction zone contributes to decoupling of Nd and Hf isotopic systems, with former providing a more reliable estimate of the source characteristics of granitic magmas.
基金supported by the National Natural Science Foundation of China(grants No.41372108 and41602110)the Research Fund for the Doctoral Program of Higher Education of China(grant No.20133718130001)+1 种基金the Qingdao Postdoctoral Applied Research Project(grant No.2015193)the SDUST Research Fund(grant No.2015TDJH101)
文摘Objective The NE China is located in the eastern segment of the Central Asian Orogenic Belt(CAOB),which is a large accretionary orogen between the Siberian Craton and the North China Craton(NCC).Many researches have discussed about the evolution of the Paleo-Asian Ocean(PAO)in the eastern CAOB.However,
基金financially supported by the Inner Mongolia Autonomous Region Geological and Mineral Exploration Fund(Grant Nos.2017-YS01,2020-YS01)。
文摘This study focuses on the geology,geochemistry,zircon U-Pb geochronology and tectonic settings of the three types of seamount basalts from the Xingshuwa subduction accretionary complex in the Xar Moron area,eastern margin of the Central Asian Orogenic Belt(CAOB).The seamount remnants are composed of carbonate’cap’sediments,large volumes of pillow and massive basalts,carbonate breccia slope facies and radiolarian cherts.Group 1 basalts are characterized by high contents of P2 O5 and TiO2 with alkaline affinity and LREE enrichment,indicating that they are derived from intraplate magma.Group 2 basalts display N-MORB LREE depletion patterns,indicating that they were formed at a mid-ocean ridge.Group 3 basalts have shown distinct Nb depletion and high Th/Yb ratios,indicating that they were generated in an island arc tectonic setting.The zircon U-Pb age of Group 1 basalt sample XWT18-131 is 576.4±9.4 Ma,suggesting that the oceanic island seamount was the product of intraplate magmatism related to a mantle plume or’hot spot’in the late Neoproterozoic.The zircon U-Pb age of Group 2 basalt sample XWT18-132 is 483±22 Ma,indicating that the Paleo-Asian Ocean(PAO)was continuously expanding in the Early Ordovician.The zircon U-Pb age of Group 3 basalt sample XWT18-101 is 240.5±8.2 Ma,suggesting that this area underwent the evolutionary path of ocean-continent transition,developing towards continentalization during the Middle Triassic.Thus,we believe that there was both mantle plume-related intraplate magmatism and intraoceanic subduction during the evolution of the PAO,the CAOB possibly being an evolutionary model of an intraoceanic subduction and mantle plume magmatism complex.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the National Natural Science Foundation of China(Grant No.41820104004)the Fundamental Research Funds for the Central Universities(Grant No.WK2080000144).
文摘Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.