期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Molecular Biomarker Characteristics of the Linxi Formation Source Rocks in the Middle-Western Region of Inner Mongolia:New evidence for late-stage tectonic evolution of the Paleo-Asian Ocean 被引量:1
1
作者 ZHANG Yongsheng PENG Yuan +3 位作者 SHI Lizhi XING Enyuan GUI Baolin LI Kai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期745-746,共2页
Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the fol... Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the folding and lifting of the Xing-Meng Trough. The focus of thses issues is the Late Permian sedimentary environment, which is generally considered to be either an exclusively continental environment or from the closed inland sea environment in the Early to Middle stage to continental lacustrine environment in the late stage. In recent years, we have successively discovered abundant typical marine fossils (e.g., bryozoans and calcareous algae) in the Upper Permian thick limestone layer from Linxi County and Ar Horqin Banner in eastern region of Inner Mongolia and Jiutain County in Jilin Province. These significant findings have attracted the attention from fellow academics. 展开更多
关键词 In As Molecular Biomarker Characteristics of the Linxi Formation Source Rocks in the Middle-Western Region of Inner Mongolia:New evidence for late-stage tectonic evolution of the paleo-asian Ocean
下载PDF
Petrology, Geochronology and Geochemistry of the Xar Moron River Ophiolite: Implications for the Tectonic Evolution of the Paleo-Asian Ocean
2
作者 LIU Jianfeng LI Jinyi +1 位作者 ZHANG Wenlong YIN Dongfang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期31-31,共1页
As the largest accretionary orogen, the crustal tectonic framework and evolution of the Central Asian Orogenic Belt(CAOB) have always been one of the hot topics among geologists(Seng?r et al., 1993, 1996;Jahn et al., ... As the largest accretionary orogen, the crustal tectonic framework and evolution of the Central Asian Orogenic Belt(CAOB) have always been one of the hot topics among geologists(Seng?r et al., 1993, 1996;Jahn et al., 2000 a;Badarch et al., 2002;Windley et al., 2007;Li et al., 2009). The formation of the main part of the crust in the CAOB involved continuous lateral accretion of island arcs and accretionary complexes along the margins of the Siberian, Sino-Korean and Tarim paleocontinents and the final collision between these continental margins because of the subduction of the Paleo-Asian Ocean plate since Mesoproterozoic. The ophiolites, which represent the fragments of ancient oceanic lithosphere, are the direct evidence for the study of the evolution of orogenic belts. Based on field geological survey, the mantle peridotite(serpentinite), gabbro, basalt and radiolarian bedded chert, which were deemed as the "ophiolite trinity", were identified as isolated blocks in the matrix of pelitic siltstone and silty mudstone in the Kedanshan, Xingshuwa and Jiujingzi areas along the Xar Monron River in southeast Inner Mongolia of China. Besides, there were plenty of other exotic blocks, such as limestone and sandstone, in the matrix. Both of the matrix and blocks underwent strong foliated deformation. All of these rocks above constitute a tectonic mélange. Zircon U-Pb dating for the gabbro blocks in the Xingshuwa and Jiujingzi ophiolites reveals that they were formed in early Permian(275-280 Ma). The ages of the gabbros, together with the middle Permian radiolaria fossils in the chert reported by Wang and Fan(1997), indicate that the oceanic basin was not closed in early-middle Permian. The geochemical compositions of the basaltic blocks distributed in different locations in the Xingshuwa tectonic mélange display different genetic types of normal mid-ocean ridge basalt(N-MORB), enriched mid-ocean ridge basalts(E-MORB), oceanic island basalt(OIB), island arc basalt and continental marginal arc basalt, which indicates what they represented is a complex oceanic basin. Combining with the studies on regional magmatism, strata and structure data, it is suggested that the Xar Moron River Ophiolite belt represented the final suture zone of the Paleo-Asian Ocean in the southeast Inner Mongolia, and the ocean did not close before late Permian. 展开更多
关键词 OPHIOLITE the Central Asian Orogenic Belt the paleo-asian Ocean GEOCHEMISTRY tectonic evolution
下载PDF
Zircon U-Pb-Hf isotopic and geochemical characteristics of the Xierzi biotite monzogranite pluton,Linxi,Inner Mongolia and its tectonic implications 被引量:3
3
作者 Qing-Bin Guan Zheng-Hong Liu +4 位作者 Xing-An Wang Bin Wang Shi-Jie Wang Yu-Song Chen Zhi-Qiang Feng 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第2期505-516,共12页
The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we... The opening, subduction and final closure of the Paleo-Asian Ocean led to the formation of the Central Asian Orogenic Belt. Controversy has long surrounded the timing of final closure of the Paleo-Asian Ocean. Here we present zircon U-Pb ages and petrological, geochemical and in situ Hf isotope data for the Xierzi biotite monzogranite pluton, Linxi, SE Inner Mongolia. U-Pb dating of zircon by LA-ICP-MS yields a middle Permian emplacement age(268.7 ± 2.3 Ma) for the Xierzi pluton that is dominated by biotite monzogranites with high SiO_2(71.2-72.8 wt.%),alkali(Na_2 O + K_2 O =8.05-8.44 wt.%), Al_2 O_3(14.4-15.2 wt.%) and Fe_2 O_3~T relative to low MgO contents, yielding Fe_2 O_3~T/MgO ratios of 2.87-3.44, and plotting within the high-K calc-alkaline field on a SiO_2 vs. K_2 O diagram. The aluminum saturation indexes(A/CNK) of the biotite monzogranites range from 1.06 to 1.19, corresponding to weakly to strongly peraluminous. They are enriched in rare earth elements(REE), high field strength elements(HFSEs; Zr,Hf). and large ion lithophile elements(LILEs; Rb, U, Th). The LREEs are enriched relative to the HREEs,with a distinct negative Eu anomaly in a chondrite-normalized REE diagram. Geochemically, the Xierzi biotite monzogranite is classified as an aluminous A-type granite, with all samples plotting within the A2-type granite field on a Y/Nb vs. Rb/Nb diagram. Zircon ε_(Hf)(t) values and two-stage modal ages of the zircons within the pluton range from +4.80 to +13.65 and from 983 to 418 Ma, respectively, indicating that the primary magma was generated through partial melting of felsic rocks from juvenile crust.Consequently, these results demonstrate that the Xierzi pluton formed under the post-orogenic extensional setting after arc-continent collision in the middle Permian. 展开更多
关键词 Linxi area A-type granite Zircon U-Pb dating Extensional tectonic setting paleo-asian Ocean Arc-continent collision
下载PDF
Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt in NE China 被引量:6
4
作者 Yong-fei Ma Yong-jiang Liu +5 位作者 AYuPeskov Yan Wang Wei-min Song Yu-jin Zhang Cheng Qian Tong-jun Liu 《China Geology》 CAS 2022年第4期555-578,共24页
The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this be... The eastern Central Asian Orogenic Belt(CAOB)in NE China is a key area for investigating continental growth.However,the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood.NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts.The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities,respectively.In contrast,the Xing’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes.These blocks and terranes were separated by the Xinlin-Xiguitu,Heilongjiang,Nenjiang,and Solonker oceans from north to south,and these oceans closed during the Cambrian(ca.500 Ma),Late Silurian(ca.420 Ma),early Late Carboniferous(ca.320 Ma),and Late Permian to Middle Triassic(260-240 Ma),respectively,forming the Xinlin-Xiguitu,Mudanjiang-Yilan,Hegenshan-Heihe,Solonker-Linxi,and Changchun-Yanji suture zones.Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean(PAO),namely,the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans.The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west.The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south.The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner.A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO,which led to“soft collision”of tectonic units on each side,forming huge accretionary orogenic belts in central Asia. 展开更多
关键词 Eastern Central Asian Orogenic Belt paleo-asian Ocean Continental growth Soft collision Accretionary orogenic belt PALEOZOIC tectonic evolution Geological survey engineering NE China Siberia
下载PDF
Geochemistry and Tectonic History of Seamount Remnants in the Xingshuwa Subduction Accretionary Complex of the Xar Moron Area,Eastern Margin of the Central Asian Orogenic Belt 被引量:1
5
作者 CHENG Yang XIAO Qinghui +5 位作者 LI Tingdong LI Yan FAN Yuxu XU Liquan GUO Lingjun PANG Jinli 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第4期1086-1098,共13页
This study focuses on the geology,geochemistry,zircon U-Pb geochronology and tectonic settings of the three types of seamount basalts from the Xingshuwa subduction accretionary complex in the Xar Moron area,eastern ma... This study focuses on the geology,geochemistry,zircon U-Pb geochronology and tectonic settings of the three types of seamount basalts from the Xingshuwa subduction accretionary complex in the Xar Moron area,eastern margin of the Central Asian Orogenic Belt(CAOB).The seamount remnants are composed of carbonate’cap’sediments,large volumes of pillow and massive basalts,carbonate breccia slope facies and radiolarian cherts.Group 1 basalts are characterized by high contents of P2 O5 and TiO2 with alkaline affinity and LREE enrichment,indicating that they are derived from intraplate magma.Group 2 basalts display N-MORB LREE depletion patterns,indicating that they were formed at a mid-ocean ridge.Group 3 basalts have shown distinct Nb depletion and high Th/Yb ratios,indicating that they were generated in an island arc tectonic setting.The zircon U-Pb age of Group 1 basalt sample XWT18-131 is 576.4±9.4 Ma,suggesting that the oceanic island seamount was the product of intraplate magmatism related to a mantle plume or’hot spot’in the late Neoproterozoic.The zircon U-Pb age of Group 2 basalt sample XWT18-132 is 483±22 Ma,indicating that the Paleo-Asian Ocean(PAO)was continuously expanding in the Early Ordovician.The zircon U-Pb age of Group 3 basalt sample XWT18-101 is 240.5±8.2 Ma,suggesting that this area underwent the evolutionary path of ocean-continent transition,developing towards continentalization during the Middle Triassic.Thus,we believe that there was both mantle plume-related intraplate magmatism and intraoceanic subduction during the evolution of the PAO,the CAOB possibly being an evolutionary model of an intraoceanic subduction and mantle plume magmatism complex. 展开更多
关键词 SEAMOUNT GEOCHEMISTRY U-Pb geochronology of zircons tectonic setting paleo-asian Ocean
下载PDF
Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Early–Middle Triassic Adakitic Plutons in Central-eastern Jilin Province, NE China: Constraints on the Non-synchronous Closure of Paleo-Asian Ocean 被引量:2
6
作者 SHI Chenglong DING Xiaozhong +2 位作者 ZHOU Xiaodong NIE Lijun ZHANG Jibiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第5期1615-1630,共16页
The Changchun–Yanji suture zone(CYSZ) in NE China is considered as the suture between the North China Craton(NCC) and Central Asian Orogenic Belt(CAOB). The geochronology, geochemistry and Sr-NdHf isotopes of Early–... The Changchun–Yanji suture zone(CYSZ) in NE China is considered as the suture between the North China Craton(NCC) and Central Asian Orogenic Belt(CAOB). The geochronology, geochemistry and Sr-NdHf isotopes of Early–Middle Triassic adakitic plutions from the CYSZ, are presented in this paper to discuss their petrogenesis and tectonic setting, as well as to constrain the timing and style of the Paleo-Asian Ocean's final closure. In Early Triassic, the Dayushan pluton(ca. 250 Ma) from western CYSZ has negative ε_(Nd)(t) values, bidirectional provenances(NCC and CAOB) of ε_(Hf)(t), which are formed in a collision tectonic setting. In contrast, in eastern CYSZ, the early Triassic samples in Liangshan(ca. 242 Ma) were high Mg~# values, positive ε_(Nd)(t), single provenances(CAOB) of ε_(Hf)(t) resulting from a subduction setting. In the Middle Triassic, the Atype granites in western CYSZ are found in previous studies representing a post-collisional extensional environment, whereas syn-collisional Lianyanfeng granites(ca. 237 Ma) in eastern CYSZ with low ISr and large scale ε_(Nd)(t) and ε_(Hf)(t) values from bidirectional provenances(NCC and CAOB), represent a collisional setting. The Paleo-Asian Ocean's occurred in a scissor-like fashion along the CYSZ during the Triassic period. 展开更多
关键词 GRANITOIDS tectonic evolution paleo-asian Ocean Central Asian Orogenic belt
下载PDF
Permian tectonic evolution and continental accretion in the eastern Central Asian Orogenic Belt:A perspective from the intrusive rocks
7
作者 Anzong Fu Hongyan Geng +4 位作者 Changzhou Deng Chenglu Li Jishuang Ding Bizheng Yang Wenpeng Yang 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期433-451,共19页
The tectonic evolution and history of continental accretion of the eastern Central Asian Orogenic Belt(CAOB)are not yet fully understood.In this study,we investigate Permian intrusive rocks from the Jiamusi Block of t... The tectonic evolution and history of continental accretion of the eastern Central Asian Orogenic Belt(CAOB)are not yet fully understood.In this study,we investigate Permian intrusive rocks from the Jiamusi Block of the eastern CAOB to constrain the tectonic evolution and continental accretion of this region during the late-stage evolution of the Paleo-Asian Ocean.Our new data show that Early Permian gabbro-diorites were derived from the partial melting of depleted mantle metasomatized by oceanic-slab-released fluids.Middle Permian adakitic granites have low Na2O and MgO and high K2O contents,indicating a thickened-lower-crust source.Late Permian S-type granites were derived from the partial melting of continental crust.A compilation of the available geochronological data for Permian intrusive rocks(including adakitic and A-,S-,and I-type granites and mafic rocks)from the eastern CAOB reveals that the A-type granites formed mainly during the Early–Middle Permian,S-type and adakitic granites mostly during the Middle–Late Permian,and I-type granites and mantle-derived mafic rocks throughout the Permian.The A-type granites,which are proposed to have been sourced from thinned continental crust,indicate an extensional setting in the eastern CAOB during the Early Permian.The Middle–Late Permian adakitic granites imply a thickened continental crust,which indicates a compressional setting.Therefore,the eastern CAOB underwent a transition from extension to compression during the Middle Permian,which was probably triggered by the late-stage subduction of Paleo-Asian oceanic crust.Considering the petrogenesis of the intrusive rocks and inferred regional tectonic evolution of the eastern CAOB,we propose that vertical underplating of mantle-and oceanic-slabderived magmas contributed the materials for continental crust accretion. 展开更多
关键词 PERMIAN Intrusive rocks Eastern Central Asian Orogenic Belt paleo-asian Ocean tectonic evolution
原文传递
Construction of the Continental Asia in Phanerozoic:A Review 被引量:16
8
作者 CHEN Xuanhua DONG Shuwen +5 位作者 SHI Wei DING Weicui ZHANG Yiping LI Bing SHAO Zhaogang WANG Ye 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第1期26-51,共26页
This is a review of the formation and tectonic evolution of the continental Asia in Phanerozoic.The continental Asia has formed on the bases of some pre-Cambrian cratons,such as the Siberia,India,Arabia,North China,Ta... This is a review of the formation and tectonic evolution of the continental Asia in Phanerozoic.The continental Asia has formed on the bases of some pre-Cambrian cratons,such as the Siberia,India,Arabia,North China,Tarim,South China,and Indochina,through multi-stage plate convergence and collisional collages in Phanerozoic.The north-central Asia had experienced the expansion and subduction of the Paleo-Asian Ocean(PAO)in the early Paleozoic and the closure of the PAO in the late Paleozoic and early Mesozoic,forming the PAO regime and Central Asian orogenic belt(CAOB).In the core of the CAOB,the Mongol-Okhotsk Ocean(MOO)opened with limited expansion in the Early Permian and finally closed in the Late Jurassic–Early Cretaceous.The south-central Asia had experienced mainly multi-stage oceanic opening,subduction and collision evolution in the Tethys Ocean,forming the Tethys regime and Himalaya-Tibetan orogenic belt.In eastern Asia,the plate subduction and continental margin orogeny on western margin of the Pacific Ocean,forms the West Pacific regime and West Pacific orogenic belt.The PAO,Tethys,and West Pacific regimes,together with Precambrian cratons among or surrounding them,made up the major tectonic and dynamic systems of the continental Asia in Phanerozoic.Major tectonic events,such as the Early Paleozoic Qilian,Uralian,and Dunhuang orogeneses,the late Paleozoic East Junggar,Tianshan and West Junggar orogeneses,the Middle to Late Permian Ailaoshan orogeny and NorthSouth Lhasa collision,the early Mesozoic Indochina-South China and North-South China collisions,the late Mesozoic Mongolia-Okhotsk orogeny,Lhasa-Qiangtang collision,and intra-continental Yanshanian orogeny,and the Cenozoic IndoAsian,Arab-Asian,and West Pacific margin collisions,constrained the formation and evolution of the continental Asia.The complex dynamic systems have left large number of deformation features,such as large-scale strike-slip faults,thrustfold systems and extensional detachments on the continental Asia.Based on past tectonics,a future supercontinent,the Ameurasia,is prospected for the development of the Asia in ca.250 Myr. 展开更多
关键词 paleo-asian Ocean TETHYS West Pacific tectonic events geodynamic systems continental Asia PHANEROZOIC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部