The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling.In order to better understand its complex thermal history,apa...The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling.In order to better understand its complex thermal history,apatite fission track (AFT) thermochronology was applied to borehole samples from the Tazhong Uplift Zone (TUZ).Twelve sedimentary samples of Silurian to Triassic depositional ages were analyzed from depths coinciding with the apatite partial annealing zone (~60-120 ℃).The AFT ages,ranging from 132 ± 7 Ma (from a Triassic sample) to 25 ± 2 Ma (from a Carboniferous sample),are clearly younger than their depositional ages and demonstrate a total resetting of the AFT thermometer after deposition.The AFT ages vary among different tectonic belts and decrease from the No.Ten Faulted Zone (133-105 Ma) in the northwest,the Central Horst Zone in the middle (108-37 Ma),to the East Buried Hill Zone in the south (51 25 Ma).Given the low magnitude of post-Triassic burial heating evidenced by low vitrinite reflectance values (Ro < 0.7%),the total resetting of the AFT system is speculated to result from the hot fluid flow along the faults.Thermal effects along the faults are well documented by younger AFT ages and unimodal single grain age distributions in the vicinity of the faults.Permian-early Triassic basaltic volcanism may be responsible for the early Triassic total annealing of those samples lacking connectivity with the fault.The above arguments are supported by thermal modeling results.展开更多
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri...Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.展开更多
Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal t...Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal the oil and gas enrichment law in the fault damage zones.The following findings were reached:(1)Through the filed survey,the fault damage zone system consists of fault core,damage zone with branch fault and fracture network.Affected by the active nature of the major faults,the fault damage zones differ in planar pattern and scale along the major faults.(2)3D seismic profiles reveal that there are three types of fault damage zones in carbonate strata in Tazhong paleo-uplift,strike-slip fault damage zones,thrust fault damage zones and superimposed fault damage zones.Featuring3 flowers and 3 root belts in vertical,the strike-slip fault damage zone can be subdivided into linear type,oblique type,feather type and horsetail type in plane.Thrust fault damage zones can be further divided into fault anticline type,anticline type and slope type.As the superimposition result of the above two kinds of fault damage zones,superimposed fault damage zones appear in three patterns,intersect type,encompassment type and penetrating type.(3)Cores from wells and geochemical data show oil and gas may migrate along the major fault and laterally.The feather type in strike-slip fault system,fault anticline type in thrust fault damage zone and intersect type in superimposed fault damage zone are possible sites for high production and efficiency wells.展开更多
The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This d...The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This deposit is primarily a quartz vein-type gold deposit,with ore bodies occurring mainly within Neoproterozoic metasediments.The main metallic minerals in the ore are pyrite,chalcopyrite,and arsenopyrite.In this study,the petrography and microthermometry of ore-forming fluid inclusions,oxygen isotopes of gold-bearing quartz,and sulfur isotopes of goldbearing sulfides and arsenopyrite were analyzed.Three types of fluid inclusions were identified:type Ⅰa three-phase inclusions comprising vapor and two phases of liquids(V_(CO_(2))+L_(CO_(2))+L_(H2O)),type Ⅰb two-phase liquids(L_(CO_(2))+L_(H2O)),typeⅡ two-phase vapor-rich inclusions(V/V+L> 50%),and type Ⅲ pure liquid inclusions.Type Ⅰ inclusions were heated uniformly to the liquid phase,type Ⅱ inclusions were heated uniformly to the gas phase,and type Ⅲ inclusions were heated without change.In general,the temperature range of homogenization to liquid phase of fluid inclusions in the Mibei gold deposit is 204-227℃.The salinity of the inclusion ranges from 4.6 to 12.2 wt% NaCl equiv.The δ~(18)O_(SMOW) of gold-bearing quartz varies from 16.9‰ to 17.5‰.The δ~(18)O_(H2O) of gold-bearing quartz are varied from 6.5‰ to 7.5‰.The δ~(34)S values of gold-bearing pyrite range from 1.7‰ to 6.8‰.The δ~(34)S values of gold-bearing arsenopy rite range from 5.6%o to 5.9‰.Theδ~(34)S values of pyrite from wall rocks slate range from 6.4‰ to 11.6‰.This evidence implies that the ore-forming fluids of the Mibei gold deposit originated from magmatic-hydrothermal processes,mixing with minor S from the surrounding metasediments.Combined with the evolution of the Jiangnan orogenic belt,due to the magmatic and tectonic activities of the Xuefengshan uplift during the Caledonian period,the fault seal mechanism controlled the ore-forming process.Overall,the Mibei gold deposit is more akin to a magmatic-hydrothermal gold deposit.展开更多
Tectonically active areas,such as forearc regions,commonly show contrasting relief,differential tectonic uplift,variations in erosion rates,in river incision,and in channel gradient produced by ongoing tectonic deform...Tectonically active areas,such as forearc regions,commonly show contrasting relief,differential tectonic uplift,variations in erosion rates,in river incision,and in channel gradient produced by ongoing tectonic deformation.Thus,information on the tectonic activity of a defined area could be derived via landscape analysis.This study uses topography and geomorphic indices to extract signals of ongoing tectonic deformation along the Mexican subduction forearc within the Guerrero sector.For this purpose,we use field data,topographical data,knickpoints,the ratio of volume to area(Rva).the stream-length gradient index(St),and the normalized channel steepness index(k_(sn)).The results of the applied landscape analysis reveal considerable variations in relief,topography and geomorphic indices values along the Guerrero sector of the Mexican subduction zone.We argue that the reported differences are indicative of tectonic deformation and of variations in relative tectonic uplift along the studied forearc.A significant drop from central and eastern parts of the study area towards the west in values of R_(VA)(from ~500 to^300),St(from ~500 to ca.400),maximum St(from ~1500-2500 to ~ 1000) and k_(sn)(from ~150 to ~100) denotes a decrease in relative tectonic uplift in the same direction.We suggest that applied geomorphic indices values and forearc topography are independent of climate and lithology.Actual mechanisms responsible for the observed variations and inferred changes in relative forearc tectonic uplift call for further studies that explain the physical processes that control the forearc along strike uplift variations and that determine the rates of uplift.The proposed methodology and results obtained through this study could prove useful to scientists who study the geomorphology of forearc regions and active subduction zones.展开更多
The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the i...The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.展开更多
Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon a...Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift.展开更多
A set of pull\|apart basins were formed along the Weixi—Qiaohou right\|lateral slip shear zone of the western part of Honghe fault zone during the period from Miocene to Quaternary.A rock suite of alkaline basalt\|tr...A set of pull\|apart basins were formed along the Weixi—Qiaohou right\|lateral slip shear zone of the western part of Honghe fault zone during the period from Miocene to Quaternary.A rock suite of alkaline basalt\|trachyte\|leucite phonolite is distributed in the Pliocene basin developed in the middle and northern parts of the fault. The location of these rocks and the features of the basin indicate the close relationship between the rock suite and the strike\|slipping.. The sedimentological and chronological evidences prove that Dianxi plateau uplifted quickly in the Pliocene. We can get the information about the plutonic process of the uplift of the plateau from this alkaline rock association. There are mainly olivine\|pyroxene\|trachyandesite and biotite\|trachyte in the rock association. The rocks are often of porphyritic texture and block or semi\|directional flowage structure while the matrix is of trachytic or microcrystalline texture. The phanerocrysts are diopsidic augite, rimpylite, biotite and perthite (olivine sometimes can be seen). The matrix are made up of alkaline feldspar microcrystalline (30%~50%), short\|grained diopside (10%~15%), light\|colored volcanic glass (0~15%) and some magnetite, while feldspar microcrystalline in some rocks are arranged directionally. And there are sharp\|edged or round pyroxenite enclaves and hemicrystalline of short grained sinaite, biotite sinaite and felsic breccia in the trachyte, with good demarcation line. The pyroxenite enclaves in the trachyte are of different size, and the size of the biggest ones are 10cm or so with the characteristic of plastic yield flowing. Sinaite hemicrystalline may come from the older intrusions of Pliocene and Eocene epoch.展开更多
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical chara...This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.展开更多
基金supported by the National Program on Key Basic Research Project(973 Program)(Grant Nos.2006CB202308 and 2011CB201100)the Major National Science&Technology Program(Grant Nos.2011ZX05006-005 and 2011ZX05006-006)the National Natural Science Foundation of China(Grant Nos.40872097 and41272161)
文摘The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling.In order to better understand its complex thermal history,apatite fission track (AFT) thermochronology was applied to borehole samples from the Tazhong Uplift Zone (TUZ).Twelve sedimentary samples of Silurian to Triassic depositional ages were analyzed from depths coinciding with the apatite partial annealing zone (~60-120 ℃).The AFT ages,ranging from 132 ± 7 Ma (from a Triassic sample) to 25 ± 2 Ma (from a Carboniferous sample),are clearly younger than their depositional ages and demonstrate a total resetting of the AFT thermometer after deposition.The AFT ages vary among different tectonic belts and decrease from the No.Ten Faulted Zone (133-105 Ma) in the northwest,the Central Horst Zone in the middle (108-37 Ma),to the East Buried Hill Zone in the south (51 25 Ma).Given the low magnitude of post-Triassic burial heating evidenced by low vitrinite reflectance values (Ro < 0.7%),the total resetting of the AFT system is speculated to result from the hot fluid flow along the faults.Thermal effects along the faults are well documented by younger AFT ages and unimodal single grain age distributions in the vicinity of the faults.Permian-early Triassic basaltic volcanism may be responsible for the early Triassic total annealing of those samples lacking connectivity with the fault.The above arguments are supported by thermal modeling results.
基金funded by the projects initiated by the China Geological Survey(DD20190217 and DD20190230)the key special project for introduced talent team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0102)Guangdong Major project of Basic and Applied Basic Research(2020B0301030003).
文摘Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-004)
文摘Based on the outcrop survey,3D seismic data interpretation,drilling data analysis,the structural patterns and distribution of fault damage zones in carbonate strata of Tazhong Paleo-uplift were established to reveal the oil and gas enrichment law in the fault damage zones.The following findings were reached:(1)Through the filed survey,the fault damage zone system consists of fault core,damage zone with branch fault and fracture network.Affected by the active nature of the major faults,the fault damage zones differ in planar pattern and scale along the major faults.(2)3D seismic profiles reveal that there are three types of fault damage zones in carbonate strata in Tazhong paleo-uplift,strike-slip fault damage zones,thrust fault damage zones and superimposed fault damage zones.Featuring3 flowers and 3 root belts in vertical,the strike-slip fault damage zone can be subdivided into linear type,oblique type,feather type and horsetail type in plane.Thrust fault damage zones can be further divided into fault anticline type,anticline type and slope type.As the superimposition result of the above two kinds of fault damage zones,superimposed fault damage zones appear in three patterns,intersect type,encompassment type and penetrating type.(3)Cores from wells and geochemical data show oil and gas may migrate along the major fault and laterally.The feather type in strike-slip fault system,fault anticline type in thrust fault damage zone and intersect type in superimposed fault damage zone are possible sites for high production and efficiency wells.
基金financially supported by National Natural Science Foundation of China (Grant No. 42273063)the Young Elite Scientists Sponsorship (YESS) Program of the China Association for Science and Technology (Grant No. YESS20220661)。
文摘The Mibei gold deposit,located in the southwestern part of the Xuefengshan uplift zone,the middle section of the Jiangnan orogenic belt in southern China,has estimated gold resources of approximately seven tons.This deposit is primarily a quartz vein-type gold deposit,with ore bodies occurring mainly within Neoproterozoic metasediments.The main metallic minerals in the ore are pyrite,chalcopyrite,and arsenopyrite.In this study,the petrography and microthermometry of ore-forming fluid inclusions,oxygen isotopes of gold-bearing quartz,and sulfur isotopes of goldbearing sulfides and arsenopyrite were analyzed.Three types of fluid inclusions were identified:type Ⅰa three-phase inclusions comprising vapor and two phases of liquids(V_(CO_(2))+L_(CO_(2))+L_(H2O)),type Ⅰb two-phase liquids(L_(CO_(2))+L_(H2O)),typeⅡ two-phase vapor-rich inclusions(V/V+L> 50%),and type Ⅲ pure liquid inclusions.Type Ⅰ inclusions were heated uniformly to the liquid phase,type Ⅱ inclusions were heated uniformly to the gas phase,and type Ⅲ inclusions were heated without change.In general,the temperature range of homogenization to liquid phase of fluid inclusions in the Mibei gold deposit is 204-227℃.The salinity of the inclusion ranges from 4.6 to 12.2 wt% NaCl equiv.The δ~(18)O_(SMOW) of gold-bearing quartz varies from 16.9‰ to 17.5‰.The δ~(18)O_(H2O) of gold-bearing quartz are varied from 6.5‰ to 7.5‰.The δ~(34)S values of gold-bearing pyrite range from 1.7‰ to 6.8‰.The δ~(34)S values of gold-bearing arsenopy rite range from 5.6%o to 5.9‰.Theδ~(34)S values of pyrite from wall rocks slate range from 6.4‰ to 11.6‰.This evidence implies that the ore-forming fluids of the Mibei gold deposit originated from magmatic-hydrothermal processes,mixing with minor S from the surrounding metasediments.Combined with the evolution of the Jiangnan orogenic belt,due to the magmatic and tectonic activities of the Xuefengshan uplift during the Caledonian period,the fault seal mechanism controlled the ore-forming process.Overall,the Mibei gold deposit is more akin to a magmatic-hydrothermal gold deposit.
基金funding provided by CONACYT-SEP Ciencia Basica(Grant No.129456):Active Tectonic Deformation along the Pacific Coast of Mexico and by the research grants PAPIIT IN110514 and DGAPA-PASPA 2015-2016a postdoctoral fellowship provided through the DGAPA-UNAM program
文摘Tectonically active areas,such as forearc regions,commonly show contrasting relief,differential tectonic uplift,variations in erosion rates,in river incision,and in channel gradient produced by ongoing tectonic deformation.Thus,information on the tectonic activity of a defined area could be derived via landscape analysis.This study uses topography and geomorphic indices to extract signals of ongoing tectonic deformation along the Mexican subduction forearc within the Guerrero sector.For this purpose,we use field data,topographical data,knickpoints,the ratio of volume to area(Rva).the stream-length gradient index(St),and the normalized channel steepness index(k_(sn)).The results of the applied landscape analysis reveal considerable variations in relief,topography and geomorphic indices values along the Guerrero sector of the Mexican subduction zone.We argue that the reported differences are indicative of tectonic deformation and of variations in relative tectonic uplift along the studied forearc.A significant drop from central and eastern parts of the study area towards the west in values of R_(VA)(from ~500 to^300),St(from ~500 to ca.400),maximum St(from ~1500-2500 to ~ 1000) and k_(sn)(from ~150 to ~100) denotes a decrease in relative tectonic uplift in the same direction.We suggest that applied geomorphic indices values and forearc topography are independent of climate and lithology.Actual mechanisms responsible for the observed variations and inferred changes in relative forearc tectonic uplift call for further studies that explain the physical processes that control the forearc along strike uplift variations and that determine the rates of uplift.The proposed methodology and results obtained through this study could prove useful to scientists who study the geomorphology of forearc regions and active subduction zones.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-001,2011ZX05003-003)
文摘The development, evolution and formation mechanism of faults and their control on the migration and accumulation of Mesozoic oil and gas in the middle-shallow layers of the slope zone of Mahu sag were studied by the interpretation of seismic and drilling data. Two types of faults, normal and strike-slip, are developed in the middle-shallow layers of the slope zone of the Mahu sag and they are mostly active in the Yanshanian period. They are divided into four grade faults: The grade I strike-slip faults with NWW to near EW direction are related to the left-lateral transpressive fault zones in the northwest of Junggar Basin since the end of the Triassic. The grade II faults with NE to NNE direction are the normal faults located at the junction of the fault zone and the slope zone, and their formation is related to the extension at the top of the nose-like structures in the fault zone. The grade III faults, which are also the normal faults, are the result of the extension at the top of the lower uplifts in the slope zone and differential compaction. The grade IV faults with NE direction are normal faults, which may be related to the extension environment at the tip of the lower uplifts. Faults not only are the channel for the vertical migration of oil and gas, but also control the oil-gas accumulation. There are two types of oil-gas reservoirs in the middle-shallow layers of slope zone of Mahu sag: fault block reservoirs and fault-lithologic reservoirs. They have large traps and promising exploration potential.
基金Supported by the China Science and Technology Major Project(2017ZX05008-004-001,2017ZX05001-001)Chinese Academy of Sciences Strategic Pilot Project(XDA14010302)
文摘Based on three-dimensional seismic interpretation, structural and sedimentary feature analysis, and examination of fluid properties and production dynamics, the regularity and main controlling factors of hydrocarbon accumulation in the Tazhong uplift, Tarim Basin are investigated. The results show that the oil and gas in the Tazhong uplift has the characteristics of complex accumulation mainly controlled by faults, and more than 80% of the oil and gas reserves are enriched along fault zones. There are large thrust and strike-slip faults in the Tazhong uplift, and the coupling relationship between the formation and evolution of the faults and accumulation determine the difference in complex oil and gas accumulations. The active scale and stage of faults determine the fullness of the traps and the balance of the phase, that is, the blocking of the transport system, the insufficient filling of oil and gas, and the unsteady state of fluid accumulation are dependent on the faults. The multi-period tectonic sedimentary evolution controls the differences of trap conditions in the fault zones, and the multi-phase hydrocarbon migration and accumulation causes the differences of fluid distribution in the fault zones. The theory of differential oil and gas accumulation controlled by fault is the key to the overall evaluation, three-dimensional development and discovery of new reserves in the Tazhong uplift.
文摘A set of pull\|apart basins were formed along the Weixi—Qiaohou right\|lateral slip shear zone of the western part of Honghe fault zone during the period from Miocene to Quaternary.A rock suite of alkaline basalt\|trachyte\|leucite phonolite is distributed in the Pliocene basin developed in the middle and northern parts of the fault. The location of these rocks and the features of the basin indicate the close relationship between the rock suite and the strike\|slipping.. The sedimentological and chronological evidences prove that Dianxi plateau uplifted quickly in the Pliocene. We can get the information about the plutonic process of the uplift of the plateau from this alkaline rock association. There are mainly olivine\|pyroxene\|trachyandesite and biotite\|trachyte in the rock association. The rocks are often of porphyritic texture and block or semi\|directional flowage structure while the matrix is of trachytic or microcrystalline texture. The phanerocrysts are diopsidic augite, rimpylite, biotite and perthite (olivine sometimes can be seen). The matrix are made up of alkaline feldspar microcrystalline (30%~50%), short\|grained diopside (10%~15%), light\|colored volcanic glass (0~15%) and some magnetite, while feldspar microcrystalline in some rocks are arranged directionally. And there are sharp\|edged or round pyroxenite enclaves and hemicrystalline of short grained sinaite, biotite sinaite and felsic breccia in the trachyte, with good demarcation line. The pyroxenite enclaves in the trachyte are of different size, and the size of the biggest ones are 10cm or so with the characteristic of plastic yield flowing. Sinaite hemicrystalline may come from the older intrusions of Pliocene and Eocene epoch.
基金supported by the Key Projects of China Seismic Array(201308011)Earthquake Science(201508006)the China Earthquake Administration,Institute of Seismology Foundation(201326126)
文摘This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.