The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-ric...The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.展开更多
Understanding the paleoenvironment and phytogeographical history of the Tibetan Plateau,China relies on discovering new plant fossils.The Qaidam Basin has long been regarded as an ideal‘field laboratory’to investiga...Understanding the paleoenvironment and phytogeographical history of the Tibetan Plateau,China relies on discovering new plant fossils.The Qaidam Basin has long been regarded as an ideal‘field laboratory’to investigate the paleoclimate and paleobiological evolution of the northern Tibetan Plateau.However,fossil angiosperms from the Qaidam Basin are rare,and our knowledge of its paleovegetation is poor.Here,we report fossil leaves and fruits of Betulaceae found from the Oligocene Shangganchaigou Formation of northwestern Qaidam Basin(Huatugou area).Comparative morphological analysis led us to assign the fruits to the Betula subgenus Betula and the leaves to Carpinus grandis.These findings,together with other reported fossil plants from the same locality,reveal a close floristic linkage between the Qaidam Basin and Europe during the Oligocene.The northern pathway of this floristic exchange may have crossed through the Qaidam Basin during the late Paleogene.This floristic linkage may have been facilitated by the continuous narrowing of the Turgai Strait and stronger westerlies,which transported moisture and provided favorable climatic conditions.Indeed,fossil plants collected from the Qaidam Basin suggest that during the Oligocene this region had warm and humid deciduous broad-leaf forest,which differs from the region’s modern vegetation and indicates that the Qaidam Basin may have been a suitable region for these plants to flourish and spread during the Oligocene.展开更多
The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for eva...The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.展开更多
The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentiou...The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentious subject fuelling many ongoing debates.This study investigates the genesis of the organic matter-rich shale by using molecular geochemistry.The LTB shales can be divided into three sections.The SectionⅠshales were deposited in saline,stratified and anoxic water conditions,which are related to seawater incursion events.At least three episodic and periodic seawater incursion events were recognized during SectionⅠshale deposition.The SectionⅡshales deposited in brackish to fresh and deep lake-level conditions with high primary productivity,which are related to lake-level transgression.The SectionⅢshales were deposited under fresh and slightly oxidized water conditions,which are related to lake-level regression.Two organic matter enrichment models for the LTB shales are identified,that is,the seawater incursion model and the maximum lake-level transgression sedimentation model,which act on different shale sections,both playing significant roles in the enrichment of organic matter.展开更多
The Oligocene-Miocene trajectory exposed at the Lubuk Lawas and Lubuk Bernai Stratigraphic Tracks in Bukit Tigapuluh, Jambi Subbasin, Indonesia, archives remnants of equatorial vegetation during extreme global warming...The Oligocene-Miocene trajectory exposed at the Lubuk Lawas and Lubuk Bernai Stratigraphic Tracks in Bukit Tigapuluh, Jambi Subbasin, Indonesia, archives remnants of equatorial vegetation during extreme global warming and near the beginning of the East Java-Eurasia microcontinent collision, and was carried out using mapping surface analysis, petrological analysis, sedimentology, stratigraphy and palinology. The rock units were deposited during one sedimentation phase, that is the continental deposition phase, which consists of conglomerates, gravel sandstones and sandstones that fill the basin followed by transgressive deposits associated with the deepening of the basin environment. Three palynozones Meyeripollis naharkotensis (Oligocene), Florschuetzia trilobata (Early Miocene) and Florschuetzia meridionalis (Middle Miocene) were identified stratigraphically on the basis of these pollen. The rock layers are deposits from the Early Oligocene to Middle Miocene from bottom to top. The depositional environment changed over time, passing from a narrow, steep-sided tectonic basin, during the Early to Late Oligocene, followed by a lacustrine basin to a palustine with oceanic influence, as a result of distensive E-W movement between the Jambi Fault and the Sunda Fault in the Late Oligocene to the Middle Miocene. Occurrence of taxonomically highly diverse angiosperm pollen in all three palynozones attests to an extremely rich inland and nearshore tropical flora under a strong seasonal rainfall regime. The climate remained warm and became increasingly humid towards the end of the Miocene. The nature of the environment is related to the dynamics of the opening of the basin opening.展开更多
Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhous...Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.展开更多
An analysis of Thalassinoides ichnofabrics in the Cambrian Stage 4 Longwangmiao Formation from six sections near Chonqing in the Middle and Upper Yangtze Block of South China was conducted to promote the understanding...An analysis of Thalassinoides ichnofabrics in the Cambrian Stage 4 Longwangmiao Formation from six sections near Chonqing in the Middle and Upper Yangtze Block of South China was conducted to promote the understanding of the paleoenvironment of this period.Thalassinoides ichnofabrics are divided into three types according to their morphology,bioturbation index,abundance and related parameters:banded,mottled and grid.The completeness of the ichnofabrics gradually increases from banded to grid,the scale of the burrows expands,and the structure transitions from twodimensional to three-dimensional.Malacostracans,phyllocarids and enteropneusts are the most likely burrowers.The findings reveal that frequent changes in paleoenvironmental conditions are the dominant factors for generating the various Thalassinoides ichnofabrics.The changes in depositional rate,substrate properties and nutrient levels affect the behavior and building patterns of the burrowers,thus leading to the diversity of Thalassinoides ichnofabrics.In the lower Longwangmiao Formation beds,many incomplete Thalassinoides burrow systems were built in the substrates with terrigenous detrital minerals,revealing significant environmental pressure on the burrowers.Later,the Thalassinoides burrows went into complete three-dimensional boxworks.At the end of the stage,bioturbation almost disappeared,which indicates that burrowers were finding it difficult to survive in the harsh environment.展开更多
基金supported by the National Natural Science Foundation of China(No.42272110)。
文摘The controlling factors of organic-rich shale accumulation is essential for the exploration and development of shale oil and gas resources.The sedimentary environment plays a vital role in the formation of organic-rich sediments in lacustrine facies.This article unravels the mineralogy,geochemistry,and paleoenvironmental evolution during the deposition of the Paleogene Shahejie Formation(Es_(3)^(L)).It discusses the effects of paleoclimate,paleosalinity,paleoredox conditions,paleowater depth,and paleoproductivity on organic matter(OM)enrichment.Finally,the OM enrichment model was established.The results show that the mineralogical compositions are mainly composed of calcite(avg.40.13%),quartz(avg.21.64%)and clay minerals(avg.24.07%),accompanied by dolomite(avg.7.07%),feldspar(avg.6.36%)and pyrite(avg.2.95%).The Es_(3)^(L) shale has a high abundance of OM,with total organic carbon(TOC)ranging from 1.07%to 5.12%.The organic matter type is mainly composed of type I-II_(1) kerogen,which is generally considered a good-quality source rock.The source of OM is a mixture of lower bacteria,algae,and plants.During the early sedimentary period,the paleoclimate was dry and cold,with high salinity,intense reducibility,and relatively low productivity.During the late sedimentary period,the climate became warmer and more humid.As a result,the salinity decreased to a level that was suitable for biological reproduction,and productivity increased gradually due to the input of terrigenous plants.Paleosalinity and paleoclimate determined the environment of the sedimentary period,in addition,paleoproductivity and paleoredox condition indicated the formation and preservation conditions of OM.The warm and humid climate,brackish water,suitable reduction conditions and high productivity are the favorable conditions for the generation and preservation of organic matter.The research results may have implications for the genetic mechanisms of organic matter accumulation.They will provide theoretical and technical insights into the exploration and development of shale oil.
基金the China Postdoctoral Science Foundation (No. 2022M723151)the Second Tibetan Plateau Scientific Expedition Research Program (No. 2019QZKK0704)+1 种基金the National Natural Science Foundation of China (No. 42172005, 41272026, 41972008, 31870200)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB26000000)
文摘Understanding the paleoenvironment and phytogeographical history of the Tibetan Plateau,China relies on discovering new plant fossils.The Qaidam Basin has long been regarded as an ideal‘field laboratory’to investigate the paleoclimate and paleobiological evolution of the northern Tibetan Plateau.However,fossil angiosperms from the Qaidam Basin are rare,and our knowledge of its paleovegetation is poor.Here,we report fossil leaves and fruits of Betulaceae found from the Oligocene Shangganchaigou Formation of northwestern Qaidam Basin(Huatugou area).Comparative morphological analysis led us to assign the fruits to the Betula subgenus Betula and the leaves to Carpinus grandis.These findings,together with other reported fossil plants from the same locality,reveal a close floristic linkage between the Qaidam Basin and Europe during the Oligocene.The northern pathway of this floristic exchange may have crossed through the Qaidam Basin during the late Paleogene.This floristic linkage may have been facilitated by the continuous narrowing of the Turgai Strait and stronger westerlies,which transported moisture and provided favorable climatic conditions.Indeed,fossil plants collected from the Qaidam Basin suggest that during the Oligocene this region had warm and humid deciduous broad-leaf forest,which differs from the region’s modern vegetation and indicates that the Qaidam Basin may have been a suitable region for these plants to flourish and spread during the Oligocene.
基金supported by the National Natural Science Foundation of China (Grant U19B6003-01-02,42102150,42372163)。
文摘The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.
基金funded by a grant from the National Natural Science Foundation of China(Grant Nos.U2244207,42102200)the China Geological Survey Foundation(Grant Nos.DD20230257,DD20242404)。
文摘The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentious subject fuelling many ongoing debates.This study investigates the genesis of the organic matter-rich shale by using molecular geochemistry.The LTB shales can be divided into three sections.The SectionⅠshales were deposited in saline,stratified and anoxic water conditions,which are related to seawater incursion events.At least three episodic and periodic seawater incursion events were recognized during SectionⅠshale deposition.The SectionⅡshales deposited in brackish to fresh and deep lake-level conditions with high primary productivity,which are related to lake-level transgression.The SectionⅢshales were deposited under fresh and slightly oxidized water conditions,which are related to lake-level regression.Two organic matter enrichment models for the LTB shales are identified,that is,the seawater incursion model and the maximum lake-level transgression sedimentation model,which act on different shale sections,both playing significant roles in the enrichment of organic matter.
文摘The Oligocene-Miocene trajectory exposed at the Lubuk Lawas and Lubuk Bernai Stratigraphic Tracks in Bukit Tigapuluh, Jambi Subbasin, Indonesia, archives remnants of equatorial vegetation during extreme global warming and near the beginning of the East Java-Eurasia microcontinent collision, and was carried out using mapping surface analysis, petrological analysis, sedimentology, stratigraphy and palinology. The rock units were deposited during one sedimentation phase, that is the continental deposition phase, which consists of conglomerates, gravel sandstones and sandstones that fill the basin followed by transgressive deposits associated with the deepening of the basin environment. Three palynozones Meyeripollis naharkotensis (Oligocene), Florschuetzia trilobata (Early Miocene) and Florschuetzia meridionalis (Middle Miocene) were identified stratigraphically on the basis of these pollen. The rock layers are deposits from the Early Oligocene to Middle Miocene from bottom to top. The depositional environment changed over time, passing from a narrow, steep-sided tectonic basin, during the Early to Late Oligocene, followed by a lacustrine basin to a palustine with oceanic influence, as a result of distensive E-W movement between the Jambi Fault and the Sunda Fault in the Late Oligocene to the Middle Miocene. Occurrence of taxonomically highly diverse angiosperm pollen in all three palynozones attests to an extremely rich inland and nearshore tropical flora under a strong seasonal rainfall regime. The climate remained warm and became increasingly humid towards the end of the Miocene. The nature of the environment is related to the dynamics of the opening of the basin opening.
基金This study was financially supported by the National Natural Science Foundation of China(U19B6003)Frontier Project of Chinese Academy of Sciences(XDA14010201)National Key Natural Science Foundation of China(91755211).
文摘Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.
基金financially supported by the National Key Science and Technology Planning Project(2016ZX05007–004 and 2017ZX05001001–002)。
文摘An analysis of Thalassinoides ichnofabrics in the Cambrian Stage 4 Longwangmiao Formation from six sections near Chonqing in the Middle and Upper Yangtze Block of South China was conducted to promote the understanding of the paleoenvironment of this period.Thalassinoides ichnofabrics are divided into three types according to their morphology,bioturbation index,abundance and related parameters:banded,mottled and grid.The completeness of the ichnofabrics gradually increases from banded to grid,the scale of the burrows expands,and the structure transitions from twodimensional to three-dimensional.Malacostracans,phyllocarids and enteropneusts are the most likely burrowers.The findings reveal that frequent changes in paleoenvironmental conditions are the dominant factors for generating the various Thalassinoides ichnofabrics.The changes in depositional rate,substrate properties and nutrient levels affect the behavior and building patterns of the burrowers,thus leading to the diversity of Thalassinoides ichnofabrics.In the lower Longwangmiao Formation beds,many incomplete Thalassinoides burrow systems were built in the substrates with terrigenous detrital minerals,revealing significant environmental pressure on the burrowers.Later,the Thalassinoides burrows went into complete three-dimensional boxworks.At the end of the stage,bioturbation almost disappeared,which indicates that burrowers were finding it difficult to survive in the harsh environment.