The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement wi...The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 120-210 mg/L, oscillation speed of 100-200 r/min and temperature of 298-328K. The experimental results show that methylene blue is only adsorbed onto the external surface of purified palygorskite, and the apparent adsorption activation energy is 13.92 kJ/mol. The relatively low apparent adsorption activation energy suggests that the adsorption of methylene blue involves in not only a chemical, but also a physical adsorption process, and it is controlled by the combination of chemical adsorption and fiquid-film diffusion.展开更多
A single-factor experiment of copper ion adsorption on pure palygorskite was carried out to understand the Cu2+ sorption of palygorskite—an important clay mineral in soil and sedimentary rock. In addition, pH of the ...A single-factor experiment of copper ion adsorption on pure palygorskite was carried out to understand the Cu2+ sorption of palygorskite—an important clay mineral in soil and sedimentary rock. In addition, pH of the solution and the surface microstructure of palygorskite were investigated before and after adsorption. The experimental results indicated that efficiency of Cu2+ removal was related to the oscillation rate of the specimen shaker, sorption time, initial pH value and the amount of adsorbent added. Palygorskite induced Cu2+ hydrolysis and interaction between copper hydroxide colloids and palygorskite surfaces, as observed with transmission electron microscopy (TEM), were the main contributions to palygorskite removal of Cu2+. This mechanism was different from adsorption at the mineral-water interface. It was proposed that surface hydrolysis of palygorskite raised the alkalinity of the palygorskite-water interface and suspension system. Thus, the induced pH of the solution was then high enough for Cu2+ hydrolysis on the mineral surface and in solution.展开更多
Limestone can be used for CO_2 capture and sequestration(CCS) in flue gas effectively. However, its CCS capability will dramatically decline after several cycles due to the surface "sintering". In this work,...Limestone can be used for CO_2 capture and sequestration(CCS) in flue gas effectively. However, its CCS capability will dramatically decline after several cycles due to the surface "sintering". In this work, the limestone was modified with palygorskite to reduce sintering phenomenon between the absorbent particles during the CCS process and the carbonation rate of the limestone can be enhanced effectively. Palygorskite is a natural mineral with nano-fibrous structure which can reduce the mutual contact of limestone particles during the CCS process. The results were detected by TGA, SEM, MIP, FTIR and particle size analyzer respectively. The best CO_2 capture performance of modified absorbent was 13.11% improvement with only 5 wt% palygorskite added during the CCS process after 15 cycles compared with natural absorbent. It was found that excellent microscopic structures of absorbent modified with palygorskite was created, and the surface sintering was postponed leading to CO_2 capture performance enhanced under the same conditions.展开更多
Polyethyleneimine(PEI)modified palygorskite(Pal)was used for the adsorption of Cr(VI)in aqueous solution.The absorbent was characterized by Fourier transform infrared spectroscopy(FT-IR)and thermogravimetric analysis(...Polyethyleneimine(PEI)modified palygorskite(Pal)was used for the adsorption of Cr(VI)in aqueous solution.The absorbent was characterized by Fourier transform infrared spectroscopy(FT-IR)and thermogravimetric analysis(TGA).Characterized results confirmed that the Pal has been successfully modified by PEI.The modification of PEI increased the Cr(VI)adsorption performance of the Pal by the adsorption combined reduction mechanism,and amino groups of the adsorbent play the main role in the enhanced Cr(VI)adsorption.The maximum adsorption capacity was 51.10 mg·g^-1 at pH4.0 and 25°C.The adsorption kinetics of Cr(VI)on the adsorbent conforms to the Langmuir isotherm model.The maximum adsorption occurs at pH3,and then the adsorption capacity of PEI-Pal was decreased with the increase of p H values.The adsorption kinetics of Cr(VI)on PEI-Pal was modeled with pseudo-second-order model.The addition of Cl^-,SO4^2-and PO4^3-reduced the Cr(VI)adsorption by competition with Cr(VI)for the active sites of PEI-Pal.The Cr(VI)saturated PEI-Pal can be regenerated in alkaline solution,and the adsorption capacity can still be maintained at 30.44 mg·g^-1 after 4 cycles.The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI)in aqueous solutions.展开更多
Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability....Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability. Further, its energy storage ability was compared to that of ordinary concrete wall through contrastive test. The experiments show that palygorskite clay is a type of clay mineral with strong adsorption ability, and the purity of natural palygorskite clay can reach up to 97.1% after certain purification processes. Paraffin is well adsorbed by palygorskite, and the test results show that the optimal adsorption ratio is palygorskite: paraffin = 2:1(mass ratio). Palygorskite/paraffin phase change composites can be obtained by using palygorskite as the adsorbing medium to adsorb paraffin. The composite materials exhibit good heat storage(release) performance, which can store heat with increasing environment temperature and release heat with decreasing temperature. This property not only increases the inertia to environment temperature change, but also promotes the energy migration in different time and space, thus achieving a certain energy-saving effect. The application of palygorskite/paraffin phase change composite materials to the Trombe wall can significantly reduce the fluctuation of indoor temperature and enhance the thermal inertia of indoor environment. From the aspect of energy storage effect, the Trombe wall fabricated using PCMs is significantly superior to the concrete wall with the same thickness.展开更多
A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of support...A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.展开更多
Magnetically modified palygorskite composites were synthesized with γ-Fe2O3 dispersing on the external surface of clay mineral. The magnetic clay was characterized with Fourier transform infrared, X-ray diffrac- tion...Magnetically modified palygorskite composites were synthesized with γ-Fe2O3 dispersing on the external surface of clay mineral. The magnetic clay was characterized with Fourier transform infrared, X-ray diffrac- tion, transmission electron microscopy, and vibrating sample magnetometer. Candida sp. 99-125 lipase was immobilized on magnetic palygorskite composites by physical adsorption with enzyme loading of 41.5 mg· g^-1 support and enzyme activity of 2631.6 U· (g support)^-1. The immobilized lipase exhibit better thermal and broader pH stability and excellent reusabilitV compared with free lipase.展开更多
The microstructure of palygorskite from Longwang Mountain of Xuyu County, Jiangsu Province, was studied by energy dispersive X-ray analysis (EDX), selected-area electron diffraction (SAED) and high-resolution tran...The microstructure of palygorskite from Longwang Mountain of Xuyu County, Jiangsu Province, was studied by energy dispersive X-ray analysis (EDX), selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The average composition of the palygorskite studied is (Si7.38A10.62) (A10.96Fe^3+ 0.62Mg2.86 0.56)Ca0.03K0.06O20(OH)2(OH2)4, which is rich in Mg. Several SAED patterns from a single crystal of palygorskite were obtained with different zone axes. The polymorphs (monoclinic and orthorhombic) are unequivocally distinguished by distant interplanar angles, even though they possess similar sets of d-values. High-resolution images of three principal zones ([010], [100] and [110]) were obtained. The lattice fringes on HRTEM images along [010] have spacings of 0.319 nm. These fringes are interpreted as periodic alterations of two tetrahedral (T) sheets and one octahedral (O) sheet (-TT-O-TT-O-). We have directly observed trioctahedral and dioctahedral individual palygorskite particles along [100]. They are all presented as dark lines along [001], but the width of dark lines corresponding to trioctahedral crystals (0.913 nm) is twice that of the dioctahedral ones (0.456 nm). This is because the trans.sites are occupied by cations in trioctahedral palygorskite. The width of dark lines along [110] is 1.024 nm, a bit thinner than the theoretical spacing (1.044 nm). This is because water molecules quickly leave the structure upon the irradiation by the electron beam.展开更多
Palygorskite is a typical indicator mineral of the arid and strong evaporation environment. Distribution of palygorskite in loess-red clay sequences may act as an important indicator for reconstruction of the paleoenv...Palygorskite is a typical indicator mineral of the arid and strong evaporation environment. Distribution of palygorskite in loess-red clay sequences may act as an important indicator for reconstruction of the paleoenvironment and paleoclimate. In this paper, field emission scanning electron microscope and high-resolution transmission electron microscope observations on the red clay-loess-paleosol of the Renjiapo profile at Lingtai, Gansu Province indicate that palygorskite occurs widely in red clay sequences formed before 3.6 Ma, but no occurrence has been found in eolian sediments since 3.2 Ma. Micromorphological features and microstructure of palygorskite show that it is an autogenic mineral formed during pedogenesis, and transformed from iilite-montmorilionite under the pore water action. In the Lingtai profile, the disappearance horizon of palygorskite is consistent with those of increasing magnetic susceptibility, dust flux and depositional rate. The distribution of palygorskite in the profile indicates that the interval of around 3.6 Ma was an important transformation period of the East Asian paleomonsoon, when changes took place in the East Asia paleoclimate pattern, i.e. a high-frequency strong fluctuation alternative evolution of the environment. Therefore, palygorskite is a key indicator mineral of the East Asian paleomonsoon evolution of that time.展开更多
Alow-cost porous ceramic support was prepared from low-grade palygorskite clay(LPGS) and silicon carbide(SiC)with vanadium pentoxide(V_(2) O_(5)) additives by a dry-press forming method and sintering.The effects of Si...Alow-cost porous ceramic support was prepared from low-grade palygorskite clay(LPGS) and silicon carbide(SiC)with vanadium pentoxide(V_(2) O_(5)) additives by a dry-press forming method and sintering.The effects of SiC-LPGS ratio,pressing pressure,carbon powder pore-forming agent and V_(2) O_(5) sintering additives on the microstructure and performance of the supports were investigated.The addition of an appropriate amount of SiC to the LPGS can prevent excessive shrinkage of the support during sintering,and increase the mechanical strength and open porosity of the supports.The presence of SiC(34.4%) led to increases in the open porosity and mechanical strength of 40.43% ± 0.21% and(17.76 ± 0.51) MPa,respectively,after sintering at 700℃ for 3 h.Because of its low melting point,V_(2) O_(5) can melt to liquid during sintering,which increases the mechanical strength of the supports and retains the porosity.Certainly,this can also encourage efficient use of the LPGS and avoid wasting resources.展开更多
Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composite...Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composites was evaluated by using thermogravimetric analysis (TGA). The morphology of the fractured surface and the degree of dispersion of the clay in the ABS matrix were observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis results showed the variation of the crystal structure. Measurements of the tensile properties of the ABS/clay composites proved that the ABS/OPGS composited material represented the most excellent tensile property, because of good compatibility and dispersion of ABS with OPGS.展开更多
In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatm...In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatment. The performance and pore structure of the treated palygorskite(TP) were investigated by means of microscope analyses, FT-IR, XRF, BET-SSA and full hole distribution analytical techniques. The results show that the hydrochloric acid treatment can make the gracile and aggregating compact crystal bundles inside palygorskite clay broken and dispersed, the roughness of microcrystalline surface increases, which not only can dissolve or remove dolomite but vary the superficial performance of palygorskite to some degree. The specific surface area and pore volume increase a lot, while the mean pore size decreases. The pore structure of TP changes remarkably compared with that of NP after 6mol/L hydrochloric acid treatment, and the relevant physicochemical performance can be improved.展开更多
Palygorskite(PG)adsorbent with superior adsorption property and ion-exchange ability is highly desired in the field of dye removal.However,it generates high amounts of precipitation due to the granular form,resulting ...Palygorskite(PG)adsorbent with superior adsorption property and ion-exchange ability is highly desired in the field of dye removal.However,it generates high amounts of precipitation due to the granular form,resulting in secondary pollution after adsorption.Herein,the novel high porosity PG-based nanofibers that are easy for operating and retrieving have been fabricated using effective solution blowing and subsequent calcination.The obtained highly efficient adsorption nanofibers exhibit large specific surface area about 170.50 m^(2)/g with average diameter from 243 nm to 365 nm.Based on the abovementioned nanofibrous structure and negatively charged PG,the solution blowing of PG-based nanofibers(SBPNs)showed high adsorption capacity for methylene blue(MB)(112.36 mg/g).In addition,the adsorption of SBPNs is well described by the Langmuir isotherm model.This work provides new SBPNs forming process for the fields of dye removal,which may achieve the production of PG adsorbents at the industrial level.展开更多
This study reports the successful synthesis of supported TiO<sub>2</sub>_Palygorskite nanocomposites by a one-pot dry mechanochemical route. Indeed, the elaboration procedure involved an in-situ reaction b...This study reports the successful synthesis of supported TiO<sub>2</sub>_Palygorskite nanocomposites by a one-pot dry mechanochemical route. Indeed, the elaboration procedure involved an in-situ reaction between accessories carbonates present in raw fibrous palygorskite clay and titanyl sulfate (TiOSO<sub>4</sub>) precursor under variable grinding conditions, essentially ball/solid matter mass ratio and rotation velocity. This yielded after air annealing at 600%C for 1 h to the immobilization of anatase TiO<sub>2</sub> nanoparticles (≈8 nm of average size) as evidenced by XRD and TEM analyses. Once the conditions of elaboration were optimized, the photocatalytic properties were evaluated under 3 conditions: artificial UV radiation, artificial solar radiation (UV + visible range) and under dynamic solar illumination taking into account the discontinuities of the solar resource. The results allowed the estimation and comparison of the catalyst’s capabilities and showed its ability to work under natural irradiation. The so developed supported photocatalysts TiO<sub>2</sub>/Palygorskite exhibited a good activity towards the removal of Orange G (OG) dye from aqueous media under artificial UV and natural solar radiations.展开更多
Palygorskite clays sampled from palygorskite clay deposits in Jiangsu and Anhui provinces were investigated by transmission electron microscopy (TEM). Many intergrowth phenomena of special ultra-microstructure between...Palygorskite clays sampled from palygorskite clay deposits in Jiangsu and Anhui provinces were investigated by transmission electron microscopy (TEM). Many intergrowth phenomena of special ultra-microstructure between smectite and palygorskite were found. The ultra-microstructure indicates that palygorsite fiberrous crystals grow along (001) of primary smectite through structural transformation and decomposition of the primary smectite. According to field investigation and X-ray diffraction (XRD) analyses, the transformation mechanism and process can be described as: formation of smectite from basalt weathering deposited in localiza- tion basin; evaporation of lake water in aridity environment causing pH increase and concentra- tion of magnesium ion in interstice water of sediment smectite in the lake basin. Under alkaline conditions, magnesium ion occupied interlayer positions of the smectite. Because of the misfit between magnesium octahedral sheet and smectite layer, magnesium ion interaction with smec- tite layers caused the smectite to transform into palygorskite, and resulted in the formation of smectite and palygorskite complex particulates, and even smaller secondary smectite crystal plates. The transformation of smectite structure resulted in the formation of nanometer minerals with large specific surface area and excellent property of physics and chemistry in smec- tite-palygorskite mixing clay. The results from TEM investigation are important for understanding properties of palygorskite clay and application.展开更多
An activation process for developing the surface and porous structure of palygorskite/carbon(PG/C) nanocomposite using ZnC l2 as activating agent was investigated. The obtained activated PG/C was characterized by X-...An activation process for developing the surface and porous structure of palygorskite/carbon(PG/C) nanocomposite using ZnC l2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), field-emission scanning electron microscopy(SEM), and Brunauer-Emmett-Teller analysis(BET) techniques. The effects of activation conditions were examined,including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of C_C and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold(1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.展开更多
The aim of this research was to develop effective alternative therapies to reduce antibiotic use in animal agriculture. In this study, the efficacy of copper-modified palygorskite(CM-Pal) in preventing diarrhea caus...The aim of this research was to develop effective alternative therapies to reduce antibiotic use in animal agriculture. In this study, the efficacy of copper-modified palygorskite(CM-Pal) in preventing diarrhea caused by Salmonella was specifically examined both in vitro and in vivo. The CM-Pal was prepared with palygorskite(Pal) and copper nitrate. The antibacterial activity of the CM-Pal was detected by comparing the differences in cell numbers on plate count agar before and after adding the CM-Pal to Salmonella typhimurium cultures. Seventy ICR mice were then allocated into seven groups. Five groups(the treatment groups) were infected with S. typhimurium by intraperitoneal(i.p.) injection and were given Pal, CM-Pal, montmorillonite powder, gentamicin, and physiological saline, respectively. One group(the prevention group) was given CM-Pal before infection with S. typhimurium. Another group(the uninfected group) was not infected with S. typhimurium. The effects of Pal, CM-Pal, montmorillonite powder, and gentamicin on the treatment or prevention of diarrhea in the mice were examined by stool studies, fecal scoring, and assessment of growth performance and villus height. The CM-Pal had satisfactory anti-bacterial properties in vitro: the antibacterial rate was 100% after 2 h incubation with S. typhimurium NJS1 cultures(1×10-6 colony-forming units(CFU)/ml). In the in vivo experiment, the CM-Pal exerted superior effects in the treatment and prevention of diarrhea in mice compared with Pal, montmorillonite powder, and gentamicin. In the CM-Pal group, no mice showed signs of diarrhea at 24 h post infection(p.i.), and all mice fully recovered from infection. However, the Pal group, montmorillonite group, and gentamicin group only recovered after 48, 48, and 96 h, respectively. The villus height level in the CM-Pal treatment group recovered at 3 d p.i. However, the recovery time of the other groups was longer(at least 5 d). The CM-Pal prevention group had a better effect on weight gain than the other groups. This study suggested that CM-Pal may be an effective alternative to conventional antibiotics for the treatment and prevention of animal diarrhea caused by Salmonella.展开更多
Layered palygorskite(PAL),commonly called attapulgite,is a natural inorganic clay mineral composed of magnesium silicate.In this study,an aqueous miscible organic solvent treatment method is adopted to prepare molybde...Layered palygorskite(PAL),commonly called attapulgite,is a natural inorganic clay mineral composed of magnesium silicate.In this study,an aqueous miscible organic solvent treatment method is adopted to prepare molybdenum-dotted palygorskite(Amo-PMo)nanoplatelets,which greatly improved the specific surface area of PAL and the dispersion effect in an oil-based lubricant system.Their layered structure and size were confirmed using transmission electron microscopy(TEM)and atomic force microscopy.Following a tribological test lubricated with three additives(PAL,organic molybdenum(SN-Mo),and Amo-PMo),it was found that the sample of 0.5 wt%Amo-PMo exhibited the best tribological properties with a coefficient of friction of 0.09.Moreover,the resulting wear scar diameter and wear volume of the sliding ball surface were 63%and 49.6%of those lubricated with base oil,respectively.Its excellent lubricating performance and self-repairing ability were mainly attributed to the generated MoS2 adsorbed on the contact surfaces during the tribochemical reaction,thereby effectively preventing the direct collision between asperities on sliding solid surfaces.Thus,as-prepared Amo-PMo nanoplatelets show great potential as oil-based lubricant additives,and this study enriches the existing application of PAL in industry.展开更多
The permeable reactive barrier(PRB) has proven to be a costeffective technique to remediate the petro leum contaminated groundwater at a northeast field site in China. In this study, the geology, hydrogeology and co...The permeable reactive barrier(PRB) has proven to be a costeffective technique to remediate the petro leum contaminated groundwater at a northeast field site in China. In this study, the geology, hydrogeology and con tamination characterization of the field site were investigated and the natural hydrothermal palygorskite was chosen as a reactive medium. Furthermore, the adsorption of the total petroleum hydrocarbons(TPH) in the groundwater onto hydrothermal palygorskite and the adsorption kinetics were investigated. The results indicate that the removal rates of TPH, benzene, naphthalene and phenantharene could all reach up to 90% by hydrothermal palygorskite with a diameter of 0.25-2.00 mm that had been thermally pretreated at 140 ℃. The adsorption of TPH onto hydrothermal palygorskite after pretreatment followed a pseudosecondorder kinetic model and a Langmuir adsorption isotherm, suggesting that the theoretic adsorption capacity of hydrothermal palygorskite for adsorbate could be 4.2 g/g. Scan ning electron microscopy(SEM), infrared spectroscopy(IR), Xray diffraction(XRD) and Xray fluorescence spec troscopy(XRF) were carried out to analyze the adsorption mechanism. The results reveal that hydrothermal palygors kite is a fibrous silicate mineral enriched in Mg and A1 with large surface area and porosity. The dense cluster acicular and fibrous crystal of hydrothermal palygorskite, and its effect polar group OH played an important role in the physical and chemical adsorption processes of it for contaminants. This study has demonstrated hydrothermal paly gorskite is a reliable reactive medium for in situ remediation of petroleum contaminated groundwater at field sites.展开更多
Herein,palygorskite(PAL)was activated via a simple hydrothermal process in the presence of ammonium sulfide,and the effects of activation on the microstructure,physico-chemical feature and adsorption behaviors of PA...Herein,palygorskite(PAL)was activated via a simple hydrothermal process in the presence of ammonium sulfide,and the effects of activation on the microstructure,physico-chemical feature and adsorption behaviors of PAL were intensively investigated.The hydrothermal process evidently improved the dispersion of PAL crystal bundles,increased surface negative charges and built more active –Si–O-groups served as the new"adsorption sites".The adsorption property of the activated PAL for Methyl Violet(MV)was systematically investigated by optimizing the adsorption variables,including p H,ionic strength,contact time and initial MV concentration.The activated PAL exhibited a superior adsorption capability to the raw PAL for the removal of MV(from 156.05 to 218.11 mg/g).The kinetics for MV adsorption followed pseudo second-order kinetic models,while the isotherm and thermodynamics results showed that the adsorption pattern well followed the Langmuir model.The structure analysis of PAL before and after adsorption demonstrated that electrostatic interaction and chemical association of –X–O-are the prominent driving forces for the adsorption process.展开更多
基金Financial supports from National Natural Science Foundation of China (No. 40472026 and No. 40072017)
文摘The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 120-210 mg/L, oscillation speed of 100-200 r/min and temperature of 298-328K. The experimental results show that methylene blue is only adsorbed onto the external surface of purified palygorskite, and the apparent adsorption activation energy is 13.92 kJ/mol. The relatively low apparent adsorption activation energy suggests that the adsorption of methylene blue involves in not only a chemical, but also a physical adsorption process, and it is controlled by the combination of chemical adsorption and fiquid-film diffusion.
基金1 Project supported by the National Natural Science Foundation of China (Nos. 40472026 and 40072017).
文摘A single-factor experiment of copper ion adsorption on pure palygorskite was carried out to understand the Cu2+ sorption of palygorskite—an important clay mineral in soil and sedimentary rock. In addition, pH of the solution and the surface microstructure of palygorskite were investigated before and after adsorption. The experimental results indicated that efficiency of Cu2+ removal was related to the oscillation rate of the specimen shaker, sorption time, initial pH value and the amount of adsorbent added. Palygorskite induced Cu2+ hydrolysis and interaction between copper hydroxide colloids and palygorskite surfaces, as observed with transmission electron microscopy (TEM), were the main contributions to palygorskite removal of Cu2+. This mechanism was different from adsorption at the mineral-water interface. It was proposed that surface hydrolysis of palygorskite raised the alkalinity of the palygorskite-water interface and suspension system. Thus, the induced pH of the solution was then high enough for Cu2+ hydrolysis on the mineral surface and in solution.
基金Supported by the National Natural Science Foundation of China(51274159)Special Funds for The Major Science and Technology Innovation of Shaanxi Province(2012zkc06-2)
文摘Limestone can be used for CO_2 capture and sequestration(CCS) in flue gas effectively. However, its CCS capability will dramatically decline after several cycles due to the surface "sintering". In this work, the limestone was modified with palygorskite to reduce sintering phenomenon between the absorbent particles during the CCS process and the carbonation rate of the limestone can be enhanced effectively. Palygorskite is a natural mineral with nano-fibrous structure which can reduce the mutual contact of limestone particles during the CCS process. The results were detected by TGA, SEM, MIP, FTIR and particle size analyzer respectively. The best CO_2 capture performance of modified absorbent was 13.11% improvement with only 5 wt% palygorskite added during the CCS process after 15 cycles compared with natural absorbent. It was found that excellent microscopic structures of absorbent modified with palygorskite was created, and the surface sintering was postponed leading to CO_2 capture performance enhanced under the same conditions.
基金funded by the National Natural Science Foundation of China(21677092)the Scientific Research Program funded by Shaanxi Provincial Education Department(15JK1095)。
文摘Polyethyleneimine(PEI)modified palygorskite(Pal)was used for the adsorption of Cr(VI)in aqueous solution.The absorbent was characterized by Fourier transform infrared spectroscopy(FT-IR)and thermogravimetric analysis(TGA).Characterized results confirmed that the Pal has been successfully modified by PEI.The modification of PEI increased the Cr(VI)adsorption performance of the Pal by the adsorption combined reduction mechanism,and amino groups of the adsorbent play the main role in the enhanced Cr(VI)adsorption.The maximum adsorption capacity was 51.10 mg·g^-1 at pH4.0 and 25°C.The adsorption kinetics of Cr(VI)on the adsorbent conforms to the Langmuir isotherm model.The maximum adsorption occurs at pH3,and then the adsorption capacity of PEI-Pal was decreased with the increase of p H values.The adsorption kinetics of Cr(VI)on PEI-Pal was modeled with pseudo-second-order model.The addition of Cl^-,SO4^2-and PO4^3-reduced the Cr(VI)adsorption by competition with Cr(VI)for the active sites of PEI-Pal.The Cr(VI)saturated PEI-Pal can be regenerated in alkaline solution,and the adsorption capacity can still be maintained at 30.44 mg·g^-1 after 4 cycles.The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI)in aqueous solutions.
基金Funded by the National Natural Science Foundation of China(No.51778582)the Public Projects of Zhejiang Province(2016C31009)the Science and Technology Projects of Ministry of Housing and Urban Rural Construction(2014-K4-011)
文摘Palygorskite/paraffin phase-change composites were prepared by the combination of purified palygorskite clay and sliced paraffin. Then, this composite was used in the Trombe wall to improve its energy storage ability. Further, its energy storage ability was compared to that of ordinary concrete wall through contrastive test. The experiments show that palygorskite clay is a type of clay mineral with strong adsorption ability, and the purity of natural palygorskite clay can reach up to 97.1% after certain purification processes. Paraffin is well adsorbed by palygorskite, and the test results show that the optimal adsorption ratio is palygorskite: paraffin = 2:1(mass ratio). Palygorskite/paraffin phase change composites can be obtained by using palygorskite as the adsorbing medium to adsorb paraffin. The composite materials exhibit good heat storage(release) performance, which can store heat with increasing environment temperature and release heat with decreasing temperature. This property not only increases the inertia to environment temperature change, but also promotes the energy migration in different time and space, thus achieving a certain energy-saving effect. The application of palygorskite/paraffin phase change composite materials to the Trombe wall can significantly reduce the fluctuation of indoor temperature and enhance the thermal inertia of indoor environment. From the aspect of energy storage effect, the Trombe wall fabricated using PCMs is significantly superior to the concrete wall with the same thickness.
基金Supported by the National Natural Science Foundation of China (No. 20376069).
文摘A nickel-diimine catalyst [N, N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylalumi-noxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42×105g PE·molNi-1·h-1 was achieved at ethylene pressure of 6.87×105 Pa and polymerization temperature of 20℃. In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.
基金the National Basic Research Program of China(2009CB724700)the Foundation of Jiangsu Province of China for College Postgraduate Students in Innovation Engineering(CXZZ12_0440)
文摘Magnetically modified palygorskite composites were synthesized with γ-Fe2O3 dispersing on the external surface of clay mineral. The magnetic clay was characterized with Fourier transform infrared, X-ray diffrac- tion, transmission electron microscopy, and vibrating sample magnetometer. Candida sp. 99-125 lipase was immobilized on magnetic palygorskite composites by physical adsorption with enzyme loading of 41.5 mg· g^-1 support and enzyme activity of 2631.6 U· (g support)^-1. The immobilized lipase exhibit better thermal and broader pH stability and excellent reusabilitV compared with free lipase.
文摘The microstructure of palygorskite from Longwang Mountain of Xuyu County, Jiangsu Province, was studied by energy dispersive X-ray analysis (EDX), selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The average composition of the palygorskite studied is (Si7.38A10.62) (A10.96Fe^3+ 0.62Mg2.86 0.56)Ca0.03K0.06O20(OH)2(OH2)4, which is rich in Mg. Several SAED patterns from a single crystal of palygorskite were obtained with different zone axes. The polymorphs (monoclinic and orthorhombic) are unequivocally distinguished by distant interplanar angles, even though they possess similar sets of d-values. High-resolution images of three principal zones ([010], [100] and [110]) were obtained. The lattice fringes on HRTEM images along [010] have spacings of 0.319 nm. These fringes are interpreted as periodic alterations of two tetrahedral (T) sheets and one octahedral (O) sheet (-TT-O-TT-O-). We have directly observed trioctahedral and dioctahedral individual palygorskite particles along [100]. They are all presented as dark lines along [001], but the width of dark lines corresponding to trioctahedral crystals (0.913 nm) is twice that of the dioctahedral ones (0.456 nm). This is because the trans.sites are occupied by cations in trioctahedral palygorskite. The width of dark lines along [110] is 1.024 nm, a bit thinner than the theoretical spacing (1.044 nm). This is because water molecules quickly leave the structure upon the irradiation by the electron beam.
基金the National Natural Science Foundation of China(Grant No.40772032);the National Key Basic Research Project 973(Grant No. 2007CB815603).
文摘Palygorskite is a typical indicator mineral of the arid and strong evaporation environment. Distribution of palygorskite in loess-red clay sequences may act as an important indicator for reconstruction of the paleoenvironment and paleoclimate. In this paper, field emission scanning electron microscope and high-resolution transmission electron microscope observations on the red clay-loess-paleosol of the Renjiapo profile at Lingtai, Gansu Province indicate that palygorskite occurs widely in red clay sequences formed before 3.6 Ma, but no occurrence has been found in eolian sediments since 3.2 Ma. Micromorphological features and microstructure of palygorskite show that it is an autogenic mineral formed during pedogenesis, and transformed from iilite-montmorilionite under the pore water action. In the Lingtai profile, the disappearance horizon of palygorskite is consistent with those of increasing magnetic susceptibility, dust flux and depositional rate. The distribution of palygorskite in the profile indicates that the interval of around 3.6 Ma was an important transformation period of the East Asian paleomonsoon, when changes took place in the East Asia paleoclimate pattern, i.e. a high-frequency strong fluctuation alternative evolution of the environment. Therefore, palygorskite is a key indicator mineral of the East Asian paleomonsoon evolution of that time.
基金the financial support of the National Natural Science Foundation of China (No. 21978109, 21878118)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA430011)+2 种基金Natural Science Foundation of Jiangsu Province (BK20171268)Jiangsu Province industry-university-research cooperation project (BY2019179)Jiangsu Qing Lan Project。
文摘Alow-cost porous ceramic support was prepared from low-grade palygorskite clay(LPGS) and silicon carbide(SiC)with vanadium pentoxide(V_(2) O_(5)) additives by a dry-press forming method and sintering.The effects of SiC-LPGS ratio,pressing pressure,carbon powder pore-forming agent and V_(2) O_(5) sintering additives on the microstructure and performance of the supports were investigated.The addition of an appropriate amount of SiC to the LPGS can prevent excessive shrinkage of the support during sintering,and increase the mechanical strength and open porosity of the supports.The presence of SiC(34.4%) led to increases in the open porosity and mechanical strength of 40.43% ± 0.21% and(17.76 ± 0.51) MPa,respectively,after sintering at 700℃ for 3 h.Because of its low melting point,V_(2) O_(5) can melt to liquid during sintering,which increases the mechanical strength of the supports and retains the porosity.Certainly,this can also encourage efficient use of the LPGS and avoid wasting resources.
基金Funded by the National Natural Science Foundation of China (Nos.20674063 and 20774074)the Specialized Research Fund for the Doctoral Program of Higher Education (20050736001)
文摘Palygorskite (PGS) and vinyl tris-(2-methoxyethoxy) silane (KH-172) modified palygorskite (OPGS) were used to prepare acrylonitrile-butadiene-styrene (ABS)/clay composites. Thermal stability of the composites was evaluated by using thermogravimetric analysis (TGA). The morphology of the fractured surface and the degree of dispersion of the clay in the ABS matrix were observed by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis results showed the variation of the crystal structure. Measurements of the tensile properties of the ABS/clay composites proved that the ABS/OPGS composited material represented the most excellent tensile property, because of good compatibility and dispersion of ABS with OPGS.
基金Project(10200202002) supported by the National Tobacco Monopolistic Bureau of China project(40473006) supportedby the National Natural Science Foundation of China project(2006KJ010A) supported by the Natural Science Key Research Foundation ofAnhui Province
文摘In order to amend the superficial performance of palygorskite and improve its application, the natural palygorskite(NP) was treated in the dipping and ionic exchanging experiments using 6mol/L hydrochloric acid treatment. The performance and pore structure of the treated palygorskite(TP) were investigated by means of microscope analyses, FT-IR, XRF, BET-SSA and full hole distribution analytical techniques. The results show that the hydrochloric acid treatment can make the gracile and aggregating compact crystal bundles inside palygorskite clay broken and dispersed, the roughness of microcrystalline surface increases, which not only can dissolve or remove dolomite but vary the superficial performance of palygorskite to some degree. The specific surface area and pore volume increase a lot, while the mean pore size decreases. The pore structure of TP changes remarkably compared with that of NP after 6mol/L hydrochloric acid treatment, and the relevant physicochemical performance can be improved.
基金National Natural Science Foundation of China(No.51473121)Science and Technology Plans of Tianjin,China(No.20YDTPJC03180)National Undergraduate Training Programs for Innovation and Entrepreneurship,China(No.202010058069)。
文摘Palygorskite(PG)adsorbent with superior adsorption property and ion-exchange ability is highly desired in the field of dye removal.However,it generates high amounts of precipitation due to the granular form,resulting in secondary pollution after adsorption.Herein,the novel high porosity PG-based nanofibers that are easy for operating and retrieving have been fabricated using effective solution blowing and subsequent calcination.The obtained highly efficient adsorption nanofibers exhibit large specific surface area about 170.50 m^(2)/g with average diameter from 243 nm to 365 nm.Based on the abovementioned nanofibrous structure and negatively charged PG,the solution blowing of PG-based nanofibers(SBPNs)showed high adsorption capacity for methylene blue(MB)(112.36 mg/g).In addition,the adsorption of SBPNs is well described by the Langmuir isotherm model.This work provides new SBPNs forming process for the fields of dye removal,which may achieve the production of PG adsorbents at the industrial level.
文摘This study reports the successful synthesis of supported TiO<sub>2</sub>_Palygorskite nanocomposites by a one-pot dry mechanochemical route. Indeed, the elaboration procedure involved an in-situ reaction between accessories carbonates present in raw fibrous palygorskite clay and titanyl sulfate (TiOSO<sub>4</sub>) precursor under variable grinding conditions, essentially ball/solid matter mass ratio and rotation velocity. This yielded after air annealing at 600%C for 1 h to the immobilization of anatase TiO<sub>2</sub> nanoparticles (≈8 nm of average size) as evidenced by XRD and TEM analyses. Once the conditions of elaboration were optimized, the photocatalytic properties were evaluated under 3 conditions: artificial UV radiation, artificial solar radiation (UV + visible range) and under dynamic solar illumination taking into account the discontinuities of the solar resource. The results allowed the estimation and comparison of the catalyst’s capabilities and showed its ability to work under natural irradiation. The so developed supported photocatalysts TiO<sub>2</sub>/Palygorskite exhibited a good activity towards the removal of Orange G (OG) dye from aqueous media under artificial UV and natural solar radiations.
基金supported by the National Natural Science Foundation of China(Grant No.40072017).
文摘Palygorskite clays sampled from palygorskite clay deposits in Jiangsu and Anhui provinces were investigated by transmission electron microscopy (TEM). Many intergrowth phenomena of special ultra-microstructure between smectite and palygorskite were found. The ultra-microstructure indicates that palygorsite fiberrous crystals grow along (001) of primary smectite through structural transformation and decomposition of the primary smectite. According to field investigation and X-ray diffraction (XRD) analyses, the transformation mechanism and process can be described as: formation of smectite from basalt weathering deposited in localiza- tion basin; evaporation of lake water in aridity environment causing pH increase and concentra- tion of magnesium ion in interstice water of sediment smectite in the lake basin. Under alkaline conditions, magnesium ion occupied interlayer positions of the smectite. Because of the misfit between magnesium octahedral sheet and smectite layer, magnesium ion interaction with smec- tite layers caused the smectite to transform into palygorskite, and resulted in the formation of smectite and palygorskite complex particulates, and even smaller secondary smectite crystal plates. The transformation of smectite structure resulted in the formation of nanometer minerals with large specific surface area and excellent property of physics and chemistry in smec- tite-palygorskite mixing clay. The results from TEM investigation are important for understanding properties of palygorskite clay and application.
基金financially supported by the National Natural Science Foundation of China (No. 51002042, No. 40902020 and No. 51072044)the Fundamental Research Funds for the Central Universities (No. 2013HGQC0015)+1 种基金Scientific Research Foundation for the Returned Scholars from Ministry of Education of China (No. 2013JYLH0774)Project from Ministry of Science and Technology of Anhui Province (No. J2014AKKJ0002)
文摘An activation process for developing the surface and porous structure of palygorskite/carbon(PG/C) nanocomposite using ZnC l2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), field-emission scanning electron microscopy(SEM), and Brunauer-Emmett-Teller analysis(BET) techniques. The effects of activation conditions were examined,including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of C_C and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold(1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay.
基金supported by the Foundation of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province(No.HPK201506)the Natural Science Foundation of Jiangsu Province(No.BK20130686)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘The aim of this research was to develop effective alternative therapies to reduce antibiotic use in animal agriculture. In this study, the efficacy of copper-modified palygorskite(CM-Pal) in preventing diarrhea caused by Salmonella was specifically examined both in vitro and in vivo. The CM-Pal was prepared with palygorskite(Pal) and copper nitrate. The antibacterial activity of the CM-Pal was detected by comparing the differences in cell numbers on plate count agar before and after adding the CM-Pal to Salmonella typhimurium cultures. Seventy ICR mice were then allocated into seven groups. Five groups(the treatment groups) were infected with S. typhimurium by intraperitoneal(i.p.) injection and were given Pal, CM-Pal, montmorillonite powder, gentamicin, and physiological saline, respectively. One group(the prevention group) was given CM-Pal before infection with S. typhimurium. Another group(the uninfected group) was not infected with S. typhimurium. The effects of Pal, CM-Pal, montmorillonite powder, and gentamicin on the treatment or prevention of diarrhea in the mice were examined by stool studies, fecal scoring, and assessment of growth performance and villus height. The CM-Pal had satisfactory anti-bacterial properties in vitro: the antibacterial rate was 100% after 2 h incubation with S. typhimurium NJS1 cultures(1×10-6 colony-forming units(CFU)/ml). In the in vivo experiment, the CM-Pal exerted superior effects in the treatment and prevention of diarrhea in mice compared with Pal, montmorillonite powder, and gentamicin. In the CM-Pal group, no mice showed signs of diarrhea at 24 h post infection(p.i.), and all mice fully recovered from infection. However, the Pal group, montmorillonite group, and gentamicin group only recovered after 48, 48, and 96 h, respectively. The villus height level in the CM-Pal treatment group recovered at 3 d p.i. However, the recovery time of the other groups was longer(at least 5 d). The CM-Pal prevention group had a better effect on weight gain than the other groups. This study suggested that CM-Pal may be an effective alternative to conventional antibiotics for the treatment and prevention of animal diarrhea caused by Salmonella.
基金This project was supported by Major Science and Technology Project in Guizhou Province(Grant No.Q.K.H.Z.D.Z.X.Z[2019]3016),National Natural Science Foundation of China(Grant Nos.51527901,51875303,51905294,and 51465008),Science and Technology Innovation Team Project in Guizhou Province(Grant No.Q.K.H.P.T.R.C[2020]5020),Preferred Project of Scientific and Technological Activities for Personnel Studying Abroad in Guizhou Province(Grant No.Q.R.X.M.Z.Z.H.T(2018XXX)1),Science and Technology Planning Project in Guizhou Province(Grant No.Q.K.H.P.T.R.C[2017]5788),and Training Plan for High-level Innovative Talent in Guizhou Province(Grant No.Q.K.H.P.T.R.C[2016]5659).
文摘Layered palygorskite(PAL),commonly called attapulgite,is a natural inorganic clay mineral composed of magnesium silicate.In this study,an aqueous miscible organic solvent treatment method is adopted to prepare molybdenum-dotted palygorskite(Amo-PMo)nanoplatelets,which greatly improved the specific surface area of PAL and the dispersion effect in an oil-based lubricant system.Their layered structure and size were confirmed using transmission electron microscopy(TEM)and atomic force microscopy.Following a tribological test lubricated with three additives(PAL,organic molybdenum(SN-Mo),and Amo-PMo),it was found that the sample of 0.5 wt%Amo-PMo exhibited the best tribological properties with a coefficient of friction of 0.09.Moreover,the resulting wear scar diameter and wear volume of the sliding ball surface were 63%and 49.6%of those lubricated with base oil,respectively.Its excellent lubricating performance and self-repairing ability were mainly attributed to the generated MoS2 adsorbed on the contact surfaces during the tribochemical reaction,thereby effectively preventing the direct collision between asperities on sliding solid surfaces.Thus,as-prepared Amo-PMo nanoplatelets show great potential as oil-based lubricant additives,and this study enriches the existing application of PAL in industry.
文摘The permeable reactive barrier(PRB) has proven to be a costeffective technique to remediate the petro leum contaminated groundwater at a northeast field site in China. In this study, the geology, hydrogeology and con tamination characterization of the field site were investigated and the natural hydrothermal palygorskite was chosen as a reactive medium. Furthermore, the adsorption of the total petroleum hydrocarbons(TPH) in the groundwater onto hydrothermal palygorskite and the adsorption kinetics were investigated. The results indicate that the removal rates of TPH, benzene, naphthalene and phenantharene could all reach up to 90% by hydrothermal palygorskite with a diameter of 0.25-2.00 mm that had been thermally pretreated at 140 ℃. The adsorption of TPH onto hydrothermal palygorskite after pretreatment followed a pseudosecondorder kinetic model and a Langmuir adsorption isotherm, suggesting that the theoretic adsorption capacity of hydrothermal palygorskite for adsorbate could be 4.2 g/g. Scan ning electron microscopy(SEM), infrared spectroscopy(IR), Xray diffraction(XRD) and Xray fluorescence spec troscopy(XRF) were carried out to analyze the adsorption mechanism. The results reveal that hydrothermal palygors kite is a fibrous silicate mineral enriched in Mg and A1 with large surface area and porosity. The dense cluster acicular and fibrous crystal of hydrothermal palygorskite, and its effect polar group OH played an important role in the physical and chemical adsorption processes of it for contaminants. This study has demonstrated hydrothermal paly gorskite is a reliable reactive medium for in situ remediation of petroleum contaminated groundwater at field sites.
基金supported by the“863”Project of the Ministry of Science and Technology,People's Republic of China(No.2013AA032003)the National Natural Science Foundation of China(No.51403221)
文摘Herein,palygorskite(PAL)was activated via a simple hydrothermal process in the presence of ammonium sulfide,and the effects of activation on the microstructure,physico-chemical feature and adsorption behaviors of PAL were intensively investigated.The hydrothermal process evidently improved the dispersion of PAL crystal bundles,increased surface negative charges and built more active –Si–O-groups served as the new"adsorption sites".The adsorption property of the activated PAL for Methyl Violet(MV)was systematically investigated by optimizing the adsorption variables,including p H,ionic strength,contact time and initial MV concentration.The activated PAL exhibited a superior adsorption capability to the raw PAL for the removal of MV(from 156.05 to 218.11 mg/g).The kinetics for MV adsorption followed pseudo second-order kinetic models,while the isotherm and thermodynamics results showed that the adsorption pattern well followed the Langmuir model.The structure analysis of PAL before and after adsorption demonstrated that electrostatic interaction and chemical association of –X–O-are the prominent driving forces for the adsorption process.