The rain shadow regions requisite a comprehensive watershed development and management plan for sustainable water resources management. The Pambar River Basin (PRB) lies on the rain shadow region of the southern Wes...The rain shadow regions requisite a comprehensive watershed development and management plan for sustainable water resources management. The Pambar River Basin (PRB) lies on the rain shadow region of the southern Western Ghats, India, where climate showed marked intra-basin variation. A morphometric analysis was done to evaluate the drainage characteristics of PRB using topographical maps and digital elevation data. PRB was divided into eighteen 4th order basins (SB1-SB18), distributed along various climatic gradients. Lower order streams mostly dominate PRB and drainage pattern is a function of relief and structure. The terrain is highly dissected and prone to soil erosion during heavy storms and the elongated shape of PRB enables easier flood management. The influence of climate on drainage characteristics was evidently emphasized in basin morphometry. Four distinctively different classes were identified based on the morphometric similarities. The significance of morphometric analysis on the hydrological characterization is discussed and the relevance of the present study in water harvesting has been explicated.展开更多
Soil erosion and deposition in a tropical mountainous river basin, viz., Pambar River Basin (PRB), in a rain shadow region of the southern Western Ghats (India) were modelled using Revised Universal Soil Loss Equation...Soil erosion and deposition in a tropical mountainous river basin, viz., Pambar River Basin (PRB), in a rain shadow region of the southern Western Ghats (India) were modelled using Revised Universal Soil Loss Equation (RUSLE) and transport limited sediment delivery (TLSD) function in GIS. Mean gross soil erosion in the basin is 11.70 t ha-1 yr-1, and is comparable with the results of previous soil erosion studies from the region. However, mean net soil erosion from the basin is 2.92 t ha-1 yr-1 only, which is roughly 25%of the gross soil erosion. Although natural vegetation belts show relatively higher gross- and net-soil erosion rates (mainly due to high LS and C factors), their sediment transport efficiency is remarkably less, compared to the land use/ land cover types with anthropogenic signatures (i.e., plantations and crop-lands). Despite the lesser amount of annual rainfall, the high rates of soil loss from the semi-arid areas of the basin might be the result of the poor protective vegetation cover as well as isolated high intensity rainfall events. The study highlights the significance of climate-specific plans for soil erosion manage-ment and conservation of the soil resources of the basins developed in rain shadow regions.展开更多
文摘The rain shadow regions requisite a comprehensive watershed development and management plan for sustainable water resources management. The Pambar River Basin (PRB) lies on the rain shadow region of the southern Western Ghats, India, where climate showed marked intra-basin variation. A morphometric analysis was done to evaluate the drainage characteristics of PRB using topographical maps and digital elevation data. PRB was divided into eighteen 4th order basins (SB1-SB18), distributed along various climatic gradients. Lower order streams mostly dominate PRB and drainage pattern is a function of relief and structure. The terrain is highly dissected and prone to soil erosion during heavy storms and the elongated shape of PRB enables easier flood management. The influence of climate on drainage characteristics was evidently emphasized in basin morphometry. Four distinctively different classes were identified based on the morphometric similarities. The significance of morphometric analysis on the hydrological characterization is discussed and the relevance of the present study in water harvesting has been explicated.
文摘Soil erosion and deposition in a tropical mountainous river basin, viz., Pambar River Basin (PRB), in a rain shadow region of the southern Western Ghats (India) were modelled using Revised Universal Soil Loss Equation (RUSLE) and transport limited sediment delivery (TLSD) function in GIS. Mean gross soil erosion in the basin is 11.70 t ha-1 yr-1, and is comparable with the results of previous soil erosion studies from the region. However, mean net soil erosion from the basin is 2.92 t ha-1 yr-1 only, which is roughly 25%of the gross soil erosion. Although natural vegetation belts show relatively higher gross- and net-soil erosion rates (mainly due to high LS and C factors), their sediment transport efficiency is remarkably less, compared to the land use/ land cover types with anthropogenic signatures (i.e., plantations and crop-lands). Despite the lesser amount of annual rainfall, the high rates of soil loss from the semi-arid areas of the basin might be the result of the poor protective vegetation cover as well as isolated high intensity rainfall events. The study highlights the significance of climate-specific plans for soil erosion manage-ment and conservation of the soil resources of the basins developed in rain shadow regions.