Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing...Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing adaptive optics system performance is the atmospheric refractive index structure constant,C_(n)^(2),which characterizes the intensity of atmospheric optical turbulence as a function of altitude.Given its simplicity,the lunar scintillometer is the preferred method for detecting atmospheric turbulence in challenging environments like Dome A in Antarctica,where sites are still in the developmental stages and local environmental conditions are extremely harsh.However,optimizing the performance of such instruments requires carefully determining the baseline configuration of photon sensors according to each site's specific optical turbulence profile characteristics.This study uses a Monte Carlo method to identify the optimal configuration for the KunLun Turbulence Profiler(KLTP),an instrument comparable to the lunar scintillometer,developed for use at Dome A.Simulations conducted using the obtained optimal baseline configuration recovered three different model optical turbulence profiles,demonstrating the effectiveness of our method in obtaining an optimal baseline configuration.Our approach can be easily applied to baseline design for similar turbulence profilers at other sites.展开更多
Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kun...Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kunlun.In order to discuss the metallogenic potential,this study present petrographical,geochemical data,and zircon U-Pb dating for the STKD intrusion.The STKD intrusion is hosted within mafic-ultramafic rocks which contain peridotite,pyroxenite and gabbro,and mainly intruded into the marble of the Paleoproterozoic Jinshuikou Group.Harzburgite and orthopyroxenite are the main country rocks for the Cu-Ni sulfide mineralization.Combine with the positiveε_(Hf)(t)values(+1.1 to+8.6)of zircons,the enrichment of LILEs,depletion of HFSEs,and lower Ce/Pb ratios of whole rocks indicate that the parental magma was originated from the depleted asthenospheric mantle and experienced 5%–15%crustal contamination.Troctolite formed during the Early Devonian and it has weighted mean^(206)Pb/^(238)U age of 412 Ma.Regional background information has indicated that the post-collisional extension setting has already existed during the Early Devonian,leading to the formation of STKD intrusion and Cu-Ni sulfide mineralization.STKD intrusion may have the potential to be one economic Cu-Ni sulfide deposit but seems unlikely to be a super-large one.展开更多
The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development...The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.展开更多
1.Objective The West Kunlun in Xinjiang is located on the northwestern margin of the Qinghai-Tibet Plateau(Fig.1a)and at the junction of the Paleo-Asian tectonic domain and the Tethys tectonic domain.It serves as an i...1.Objective The West Kunlun in Xinjiang is located on the northwestern margin of the Qinghai-Tibet Plateau(Fig.1a)and at the junction of the Paleo-Asian tectonic domain and the Tethys tectonic domain.It serves as an important area for the study on the geologic evolution of the Karakorum-West Kunlun due to its special tectonic position.展开更多
The India–Eurasia collision has produced a number of Cenozoic deep intracontinental basins,which bear important information for revealing the far-afield responses to the remote collision.Despite their significance,th...The India–Eurasia collision has produced a number of Cenozoic deep intracontinental basins,which bear important information for revealing the far-afield responses to the remote collision.Despite their significance,their subsiding mechanism remains the subject of debate,with end-member models attributing it to either orogenic or sedimentary load.In this study,we conduct flexural subsidence modeling with a two-dimensional finite elastic plate model on the Hotan-Mazatagh section along the southern Tarim Basin,which defines a key region in the foreland of the West Kunlun Orogen,along the NW margin of the Tibetan Plateau.The modeling results indicate that the orogenic load of West Kunlun triggers the southern Tarim Basin to subside by up to less than ~6 km,with its impact weakening towards the basin interiors until ~230 km north from the Karakax fault.The sedimentary load,consisting of Cenozoic strata,forces the basin to subside by ~2 to~7 km.In combination with the retreat of the proto-Paratethys Sea and the paleogeographic reorganization of the Tarim Basin,we propose that surface processes,in particular a shift from an exorheic to an endorheic drainage system associated with the consequent thick sedimentary load,played a decisive role in forming deep intracontinental basins in the context of the India-Eurasia collision.展开更多
基金financially supported by the National Natural Science Foundation of China (12373092, 12273027, 11733007, 11873010, 12133010)the Nebula Talents Program of the National Astronomical Observatories, CAS+1 种基金the Sichuan Youth Science and Technology Innovation Research Team (21CXTD0038)the Innovation Team F unds of China West Normal University (KCXTD2022-6).
文摘Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing adaptive optics system performance is the atmospheric refractive index structure constant,C_(n)^(2),which characterizes the intensity of atmospheric optical turbulence as a function of altitude.Given its simplicity,the lunar scintillometer is the preferred method for detecting atmospheric turbulence in challenging environments like Dome A in Antarctica,where sites are still in the developmental stages and local environmental conditions are extremely harsh.However,optimizing the performance of such instruments requires carefully determining the baseline configuration of photon sensors according to each site's specific optical turbulence profile characteristics.This study uses a Monte Carlo method to identify the optimal configuration for the KunLun Turbulence Profiler(KLTP),an instrument comparable to the lunar scintillometer,developed for use at Dome A.Simulations conducted using the obtained optimal baseline configuration recovered three different model optical turbulence profiles,demonstrating the effectiveness of our method in obtaining an optimal baseline configuration.Our approach can be easily applied to baseline design for similar turbulence profilers at other sites.
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
基金financially supported by the National Natural Science Foundation of China(41272052)the projects(1212011120158 and 12120114080101)of the China Geological Survey。
文摘Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kunlun.In order to discuss the metallogenic potential,this study present petrographical,geochemical data,and zircon U-Pb dating for the STKD intrusion.The STKD intrusion is hosted within mafic-ultramafic rocks which contain peridotite,pyroxenite and gabbro,and mainly intruded into the marble of the Paleoproterozoic Jinshuikou Group.Harzburgite and orthopyroxenite are the main country rocks for the Cu-Ni sulfide mineralization.Combine with the positiveε_(Hf)(t)values(+1.1 to+8.6)of zircons,the enrichment of LILEs,depletion of HFSEs,and lower Ce/Pb ratios of whole rocks indicate that the parental magma was originated from the depleted asthenospheric mantle and experienced 5%–15%crustal contamination.Troctolite formed during the Early Devonian and it has weighted mean^(206)Pb/^(238)U age of 412 Ma.Regional background information has indicated that the post-collisional extension setting has already existed during the Early Devonian,leading to the formation of STKD intrusion and Cu-Ni sulfide mineralization.STKD intrusion may have the potential to be one economic Cu-Ni sulfide deposit but seems unlikely to be a super-large one.
基金financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B234).
文摘The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.
基金supported by the National Science Foundation of China(41302051)the Natural Science Foundation of Shaanxi Province(2020JM-311)the project of China Geological Survey(DD20221636,DD20221691)。
文摘1.Objective The West Kunlun in Xinjiang is located on the northwestern margin of the Qinghai-Tibet Plateau(Fig.1a)and at the junction of the Paleo-Asian tectonic domain and the Tethys tectonic domain.It serves as an important area for the study on the geologic evolution of the Karakorum-West Kunlun due to its special tectonic position.
基金funded by the National Natural Science Foundation of China(Grant Nos.U22B6002,41972217 and 42002219)the Second Tibetan Plateau Scientific Expedition and Research of China(Grant No.2019QZKK0708)。
文摘The India–Eurasia collision has produced a number of Cenozoic deep intracontinental basins,which bear important information for revealing the far-afield responses to the remote collision.Despite their significance,their subsiding mechanism remains the subject of debate,with end-member models attributing it to either orogenic or sedimentary load.In this study,we conduct flexural subsidence modeling with a two-dimensional finite elastic plate model on the Hotan-Mazatagh section along the southern Tarim Basin,which defines a key region in the foreland of the West Kunlun Orogen,along the NW margin of the Tibetan Plateau.The modeling results indicate that the orogenic load of West Kunlun triggers the southern Tarim Basin to subside by up to less than ~6 km,with its impact weakening towards the basin interiors until ~230 km north from the Karakax fault.The sedimentary load,consisting of Cenozoic strata,forces the basin to subside by ~2 to~7 km.In combination with the retreat of the proto-Paratethys Sea and the paleogeographic reorganization of the Tarim Basin,we propose that surface processes,in particular a shift from an exorheic to an endorheic drainage system associated with the consequent thick sedimentary load,played a decisive role in forming deep intracontinental basins in the context of the India-Eurasia collision.