A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased sl...A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.展开更多
The microstructure changes of polypropylene induced by a complex combination of shearing, friction, compression and stretching actions during pan-milling were revealed by spectroscopic techniques. X-ray diffraction an...The microstructure changes of polypropylene induced by a complex combination of shearing, friction, compression and stretching actions during pan-milling were revealed by spectroscopic techniques. X-ray diffraction analysis showed that the structure of polypropylene transferred from crystal into amorphous after undergoing enough milling operation. No transformation between crystal forms was observed. The study of the high-frequency region of the Raman spectrum between 2800 and 3100cm-1 of polypropylene indicated that molecular motion and chain deformation of PP led to amorphization and deterioration of packing regularity during pan-milling. By co-panmilling PP with bis-(2,2,6,6-tetramethyl-4-piperidinyl) sebacate under ambient condition, ESR signals of free radicals formed by mechanochemical scission of main chain were observed, and an increase of ESR intensity with milling was detected.展开更多
The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rhe...The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rheocord 90 single-screw extruder and Brabender rheometer were used to evaluate the rheological properties of HDPE. HDPE with higher initial molecular weight and larger particle size was easier to degrade under pan-milling stress, as indicated by the melt index. Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than for unmilled HDPE. The apparent shear viscosity of HDPE decreased with increasing times of milling. After milling, the flow activation energy decreased and thus the sensitivity of viscosity to temperature was reduced. Die pressure and torque during single screw extrusion were reduced significantly after milling. Plasticizing time as measured in a Brabander mixer decreased markedly with increasing milling times.展开更多
The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical an...The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical and flexibility properties,etc.Modern technologies for production of 2D materials include but are not limited to mechanochemical(solid-state/liquid-phase)exfoliation,the solvothermal method and chemical vapor deposition.In this review,strategies leading to the production of 2D materials via solid-state mechanochemistry featuring traditional high energy ball-milling and Sichuan University patented pan-milling are highlighted.The mechanism involving exfoliation,edge selective carbon radical generation of the 2D materials is delineated and this is followed by detailed discussion on representative mechanochemical techniques for tailored and improved lithium-ion storage performance.In the light of the advantages of the solid-state mechanochemical method,there is great promise for the commercialization of 2D materials for the next-generation high performance LIBs.展开更多
文摘A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.
基金This work was supported by the Special Fund for Major State Basic Research Projects (G1999064809)Doctoral Foundation by Ministry of Education of China
文摘The microstructure changes of polypropylene induced by a complex combination of shearing, friction, compression and stretching actions during pan-milling were revealed by spectroscopic techniques. X-ray diffraction analysis showed that the structure of polypropylene transferred from crystal into amorphous after undergoing enough milling operation. No transformation between crystal forms was observed. The study of the high-frequency region of the Raman spectrum between 2800 and 3100cm-1 of polypropylene indicated that molecular motion and chain deformation of PP led to amorphization and deterioration of packing regularity during pan-milling. By co-panmilling PP with bis-(2,2,6,6-tetramethyl-4-piperidinyl) sebacate under ambient condition, ESR signals of free radicals formed by mechanochemical scission of main chain were observed, and an increase of ESR intensity with milling was detected.
文摘The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rheocord 90 single-screw extruder and Brabender rheometer were used to evaluate the rheological properties of HDPE. HDPE with higher initial molecular weight and larger particle size was easier to degrade under pan-milling stress, as indicated by the melt index. Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than for unmilled HDPE. The apparent shear viscosity of HDPE decreased with increasing times of milling. After milling, the flow activation energy decreased and thus the sensitivity of viscosity to temperature was reduced. Die pressure and torque during single screw extrusion were reduced significantly after milling. Plasticizing time as measured in a Brabander mixer decreased markedly with increasing milling times.
基金financially supported by the National Natural Science Foundation of China(No.51933007,51673123)the National Key R&D Program of China(No.2017YFE0111500)the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)。
文摘The vigorous development of two-dimensional(2D)materials brings about numerous opportunities for lithiumion batteries(LIBs)due to their unique 2D layered structure,large specific surface area,outstanding mechanical and flexibility properties,etc.Modern technologies for production of 2D materials include but are not limited to mechanochemical(solid-state/liquid-phase)exfoliation,the solvothermal method and chemical vapor deposition.In this review,strategies leading to the production of 2D materials via solid-state mechanochemistry featuring traditional high energy ball-milling and Sichuan University patented pan-milling are highlighted.The mechanism involving exfoliation,edge selective carbon radical generation of the 2D materials is delineated and this is followed by detailed discussion on representative mechanochemical techniques for tailored and improved lithium-ion storage performance.In the light of the advantages of the solid-state mechanochemical method,there is great promise for the commercialization of 2D materials for the next-generation high performance LIBs.