Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but als...Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes.Nonetheless,the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites.Squalene epoxidase(SQE)is a key enzyme in the mevalonic acid pathway,which affects the biosynthesis of secondary metabolites such as terpenoid.Using ginseng transcriptome,expression,and ginsenoside content databases,this study employed bioinformatic methods to systematically analyze the genes encoding SQE in ginseng.We first selected six PgSQE candidates that were closely involved in ginsenoside biosynthesis and then identified PgSQE08-01 to be highly associated with ginsenoside biosynthesis.Next,we constructed the overexpression vector pCAMBIA3301-PgSQE08-01 and the RNAi vector pART27-PgSQE08-01 and transformed ginseng adventitious roots using Agrobacterium rhizogenes,to obtain positive hairy-root clones.Thereafter,quantitative reverse transcriptionpolymerase chain reaction and high-performance liquid chromatography were used to determine the expression of relevant genes and ginsenoside content,respectively.Then,we focused on the function of PgSQE08-01 gene,which was noted to be involved in ginsenoside biosynthesis.Thus,these findings not only provided a molecular basis for the identification of important functional genes in ginseng but also enriched genetic resources for the biosynthesis of ginsenosides using synthetic biology.展开更多
Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidas...Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.展开更多
An ocotillone type ginsenoside, together with 2 known ginsenosides was isolated from leaves of Panax ginseng and identified as pseudoginsenoside RT 5 on the basis of chemical and physicochemical evidences. It h...An ocotillone type ginsenoside, together with 2 known ginsenosides was isolated from leaves of Panax ginseng and identified as pseudoginsenoside RT 5 on the basis of chemical and physicochemical evidences. It has been so far the first example of ocotillone type ginsenoside discovered in Panax ginseng and its plausible biotransformation pathway also discussed.展开更多
The compositions and contents of ginsenbsides in Panax ginseng,P.quinquefolium and P.notoginseng were determined and compared by reversed-phase High-Performance Liquid Chro- matography(HPLC).The method was performed o...The compositions and contents of ginsenbsides in Panax ginseng,P.quinquefolium and P.notoginseng were determined and compared by reversed-phase High-Performance Liquid Chro- matography(HPLC).The method was performed on an Alltech Adsorbosphere HS C_(18) column,using 5×10^(-3)M NaH_2PO_4-H_3PO_4 buffer solution(pH 3.0)and acetonitrile-water(50:50)as gradient eluents. The baseline separation of ginsenosides Rb_1,Rb_2,Rb_1,Rc,Rd,Rf,Ro,and Re+Rg_1 was obtained in one analytical run.The ginsenosides are directly detected at 203 nm.The detection limit is 40μg at a signal to noise ratio of 3:1.The improved sample preparation and clean-up prior to injection with SEP-PAK C_(18)cartridge strongly reduced the front peaks caused by the impurities in the methanolic extracts of samples to afford a smooth baseline and clear background.The HPLC patterns of methanolic extracts mainly including the ginsenosides were found capable of serving as chemical fingerprints to differentiate the three species from each other.It was also found that there are no significant diffe- rences of the HPLC patterns between the wild Panax ginseng and the cultivated,the white and the red ginsengs,Chinese and Korean red ginsengs,and the tap roots of Panax ginseng collected in four consecutive months,only certain differences in contents of ginsenosides do exist.The contents of the nine major ginsenosides present in the rhizome,tap root and rootlet as well as the leaf of Panax quinquefolium were also determined and compared.展开更多
Panax ginseng is a slow-growing perennial plant.Panax ginseng extract has numerous biological activities,including antitumor,anti-inflammatory and antistress activities.Panax ginseng extract also has a cognition-enhan...Panax ginseng is a slow-growing perennial plant.Panax ginseng extract has numerous biological activities,including antitumor,anti-inflammatory and antistress activities.Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment.In this study,we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion,a wellknown model of vascular dementia.The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract.Morris water maze and balance beam tests were used to evaluate memory deficits and motor function,respectively.Protein quantity was used to evaluate cholinergic neurons.Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells.Western blot assay was used to evaluate protein levels of vascular endothelial growth factor,basic fibroblast growth factor,Bcl-2 and Bax.Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and b FGF protein expression in the hippocampal CA3 area.Furthermore,Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells,and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression.The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine,a commonly used drug for the treatment of vascular dementia.These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion,and therefore might have therapeutic potential for preventing and treating the disease.展开更多
A novel dammarane-type triterpene oligoglycoside, named ginsenoside-Rg6 3, was isolated from the stem-leaves of Panax ginseng C. A. Mey., together with two known ones, 20(S)-ginsenoside-Rg2 1 and 20(R)-ginsenoside-Rg2...A novel dammarane-type triterpene oligoglycoside, named ginsenoside-Rg6 3, was isolated from the stem-leaves of Panax ginseng C. A. Mey., together with two known ones, 20(S)-ginsenoside-Rg2 1 and 20(R)-ginsenoside-Rg2 2. On the basis of chemical and physicochemical evidence , the structure of ginsenoside-Rg6 have been elucidated as 6-O-(-L-rhamnosyl-(1?2)-(-D-glucopyranosyl-dammarane-(E)-20(22), 24-diene-3(, 6(, 12(-triol.展开更多
An orthogonal design was used to optimize SSR-PCR amplification system using Panax ginseng genomic DNA as template. Four levels of five factors (DNA template, Taq DNA polymerase, Mg^2+, primer, and dNTP) and anneal...An orthogonal design was used to optimize SSR-PCR amplification system using Panax ginseng genomic DNA as template. Four levels of five factors (DNA template, Taq DNA polymerase, Mg^2+, primer, and dNTP) and annealing temperature have been tested separately in this system. The results demonstrated the reaction efficiency was affected by these factors. Based on the results, a stable, productive and reproducible PCR system and cycling program for amplifying a ginseng SSR locus were obtained: 20 μL system containing 1.0 U Taq DNA polymerase, 2.0 mmol·L^-1 Mg^2+, 0.2 mmol·L^-1 dNTPs, 0.3 μmol·L^-1 SSR primer, 60 ng· μla^-1 DNA template, performed with a program of 94℃ for 5 min, 94℃ for 30 s, annealing at 56.3℃ for 30 s, 72℃ for 1 min, 37 cycles, finishing at 72℃ for 7 min, and storing at 4℃.展开更多
A new panaxadiol (compound 1) was obtained from the acid hydrolysate of the total ginsenosides of Panax ginseng C. A. Meyer (Araliaceae). On the basis of spectroscopic data and single-crystal X-ray diffraction dat...A new panaxadiol (compound 1) was obtained from the acid hydrolysate of the total ginsenosides of Panax ginseng C. A. Meyer (Araliaceae). On the basis of spectroscopic data and single-crystal X-ray diffraction data, its chemical structure was elucidated to be dammar-(E)-20(22)-ene-3β,12β,25 -tfiol.展开更多
A high performance liquid chromatography coupled with electrospray ionization-tandem mass spectrome try(HPLC-ESI-MS/MS) method was developed for the analysis and identification of ginsenosides in the extracts of raw...A high performance liquid chromatography coupled with electrospray ionization-tandem mass spectrome try(HPLC-ESI-MS/MS) method was developed for the analysis and identification of ginsenosides in the extracts of raw Panax ginseng(RPG) and steamed Panax ginseng at high temperatures(SPGHT). A total of 25 ginsenosides were extracted include of which 10 low-polar ginsenosides, such as ginsenosides F4, Rk3, Rh4, 20S-Rg3, 20R-Rg3 and so on, were identified according to their HPLC retention time and MS/MS data. The results indicated that the low polar ginsenosides were seldom found in RPG. For the exploration of the transformation pattern of the ginsenosides in steam processing, the standards of ginsenosides Re, Rg1, Rb1, Rc, Rb2, Rb3 and Rd were selected and hydrolyzed at a temperature of 120 oC. The results show that these polar ginsenosides can be converted to low-polar ginsenosides such as Rg2, Rg6, F4, Rk3 and Rg5 by hydrolyzing the sugar chains.展开更多
BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells ...BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells (NSCs) proliferation and differentiation into dopaminergic neurons using in vitro studies, and to observe NSC differentiation in a mouse model of Parkinson's disease, as well as behavioral changes before and after transplantation. DESIGN, TIME AND SETTING: In vitro neural cell biology trial and in vivo randomized, controlled animal trial were performed at the Institute of Basic Medical Sciences, Chongqing Medical University between September 2004 and December 2007. MATERIALS: TSPG (purity 〉 95%) was isolated, extracted, and identified by Chongqing Academy of Chinese Materia Medica. Recombinant human basic fibroblast growth factor (bFGF) and recombinant human epidermal growth factor (EGF) were purchased from PeproTech, USA. A total of 25 C57/BL6J mice, aged 18-20 weeks were included. Twenty were used to establish a Parkinson's disease model with i.p. injection of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) and TSPG alone or combined with interleukin-1 (IL-1)-treated NSCs prior to transplantation into the corpus striatum. The remaining five mice were pretreated for 3 days with TSPG prior to MPTP injection, serving as the TSPG prevention group. METHODS: Primary NSCs were isolated, cultured and purified from embryonic cerebral cortex. Immunocytochemistry was employed to detect specific antigen expression in the NSCs. In vitro experiment: (1) to induce proliferation, NSCs were treated with TSPG, EGF+bFGF, or TSPG+EGF+bFGF, respectively; (2) to induce dopaminergic neuronal differentiation, NSCs were treated with TSPG, IL-1, or TSPG+IL-1, respectively. MAIN OUTCOME MEASURES: In vitro experiment: the effects of TSPG on NSCs proliferation were evaluated with flow cytometry and MTT assay. Tyrosine hydroxylase expression was determined by immunocytochemistry assay to observe effects of TSPG on dopaminergic neuronal differentiation. In vivo experiment: differentiation of grafted NSCs in the mouse brain was determined by immunohistochemical staining. Behavioral changes were evaluated by spontaneous activity frequency, memory function, and score of paralysis agitans. RESULTS: (1) NSCs were cultured and passaged for more than three passages. Immunocytochemistry revealed positive nestin staining, as well as neurofilament protein and glial fibrillary acidic protein. (2) TSPG significantly increased NSC proliferation, in particular when combined with EGF and bFGF, which was twice as effective as FGF or bFGF alone. TSPG also induced dopaminergic differentiation in NSCs, in particular when TSPG was added together with IL-1, resulting in an effect five times greater than that of IL-1 alone. (3) At day 30 following transplantation, most NSCs in the TSPG prevention group differentiated into dopaminergic neurons, and the scores of paralysis agitans, spontaneous activity, and memory function were significantly increased compared with TSPG alone or TSPG+IL-1 groups (P 〈 0.05). CONCLUSION: TSPG stimulated NSC proliferation, in particular when combined with FGF and bFGF. TSPG significantly induced dopaminergic neuronal differentiation of NSCs, and the effect was greater when combined with IL-1. In addition, TSPG greatly improved behavior in the Parkinson's disease mouse model following NSC transplantation. Following NSC transplantation, TSPG pretreatment exhibited superior efficacy over either TSPG alone or TSPG in combination with IL-1, in terms of behavioral improvements in the Parkinson's disease mouse model.展开更多
A water-soluble pectin SB_~1-1 was isolated and purified from the root of Panax ginseng C. A. Mey. The HPLC analysis indicates that SB_~1-1 is homogenous. Its molecular weight was estimated via gel filtration to be 10...A water-soluble pectin SB_~1-1 was isolated and purified from the root of Panax ginseng C. A. Mey. The HPLC analysis indicates that SB_~1-1 is homogenous. Its molecular weight was estimated via gel filtration to be 10000. The GC analysis indicated that it contains the monosaccharides of GalA, Gal, Ara and Rha. Their molar ratio is 2.10∶1.00∶0.12∶0.13. Partial hydrolysis with acid, pectinase treatment, periodate oxidation, Smith degradation, methylation analyses, GC/MS analyses and NMR analyses were used for the structure analyses of SB_~1-1 . The results reveal that SB_~1-1 has a lower branched structure. The main chain is composed of GalA and Gal; the inner part is α-1,4-linked-GalA; the border is 1,4-linked-Gal. Some of the 1,4-linked-GalA and 1,4-linked-Gal residues are substituted at O6. On an average, there is one branch for every ten hexose residues. The side chain is composed of 1,6-linked-Gal and 1,3,6-linked-Gal. The nonreduced end is composed of Rha, Ara and Gal. The main glycosidic link of SB_~1-1 has an α configuration.展开更多
Korean ginseng and mountain ginseng (Panax ginseng CA Meyer) are important traditional herbal plants whose ginsenosides are generally accepted as serving to improve sexual functions, such as penile erection. We inve...Korean ginseng and mountain ginseng (Panax ginseng CA Meyer) are important traditional herbal plants whose ginsenosides are generally accepted as serving to improve sexual functions, such as penile erection. We investigated the effects of tissue-cultured mountain ginseng extract (TMGE) on male patients with erectile dysfunction (ED). A double-blind, placebo-controlled study was conducted with 143 patients experiencing ED. Over the course of 8 weeks, one group took 1 000 mg of TMGE twice a day, and the other group took 1 000 mg of placebo twice a day. The effects of the TMGE and the placebo were analyzed using the Korean version of the International Index of Erectile Function (IIEF) questionnaire. A total of 86 patients completed 8 weeks of treatment. The scores on the five domains of the IIEF after medication were significantly higher than the baseline scores in the group treated with TMGE (P 〈 0.05), whereas no significant improvement was observed in the placebo group (P 〉 0.05). Erectile function and overall satisfaction scores after medication were significantly higher in the TMGE group than in the placebo group (P 〈 0.05). Erectile function of patients in the TMGE-treated group significantly improved, suggesting that TMGE could be utilized for improving erectile function in male patients.展开更多
American ginseng, Panax quinquefolius L., is an herbaceous perennial species that is destructively harvested for its bioactive compounds called ginsenosides. The demand for this herb fosters illegal poaching and over-...American ginseng, Panax quinquefolius L., is an herbaceous perennial species that is destructively harvested for its bioactive compounds called ginsenosides. The demand for this herb fosters illegal poaching and over-harvesting that reduces genetic variability and population viability. Five wild populations in western North Carolina were studied to better understand the production of ginsenosides in leaf and root tissues. Total ginsenoside concentration was significantly higher in leaves than roots, though total yield was higher in roots due to greater root biomass. However, some ginsensosides (Rb2, Rd and Re) had higher or more consistent yields in leaves than roots, so might be developed into a sustainable source of these medicinally-active compounds. Additionally, we identified regional root chemotypes that differed in the production of the ginsenosides Rg1 and Re and could be developed into regional cultivars depending on the desired panel of ginsenosides.展开更多
A new reaction system to determine nonlinear chemical fingerprint(NCF)and its use in identification method based on double reaction system was researched.Panax ginsengs,such as ginseng,American ginseng and notoginseng...A new reaction system to determine nonlinear chemical fingerprint(NCF)and its use in identification method based on double reaction system was researched.Panax ginsengs,such as ginseng,American ginseng and notoginseng were identified by the method.The NCFs of the three samples of Panax ginsengs were determined through two nonlinear chemical systems,namely system 1 consisting of sample components,H2SO4,MnSO4,NaBrO3,acetone and the new system,system 2 consisting of sample components,H2SO4,(NH4)4Ce(SO4)2,NaBrO3 and citric acid.The comparison between the results determined through systems 1 and 2 shows that the speed to determine NCF through system 2 is much faster than that through system 1;for systems 1 and 2,the system similarities of the same kind of samples are≥98.09%and 99.78%,respectively,while those of different kinds of samples are≤63.04%and 86.34%,respectively.The results to identify the kinds of some samples by system similarity pattern show that both the accuracies of identification methods based on single system 1 and 2 are≥95.6%,and the average values are 97.1%and 96.3%,respectively;the accuracy of the method based on double system is≥97.8%,and the average accuracy is 99.3%.The accuracy of the method based on double system is higher than that based on any single system.展开更多
A new compound, 3,6,20(S)-trihydroxy- 12,23-epoxydammar-24-ene,6,20-di-O-β-D-glucopyranoside (1), was isolated from the leaves of Panax ginseng C.A. Meyer, whose structural elucidation was carried out by means of...A new compound, 3,6,20(S)-trihydroxy- 12,23-epoxydammar-24-ene,6,20-di-O-β-D-glucopyranoside (1), was isolated from the leaves of Panax ginseng C.A. Meyer, whose structural elucidation was carried out by means of spectral analysis (including IR, HR- FAB-MS and NMR). This compound showed the moderate cytotoxic activities against U937 and HeLa cells by using the MTT method.展开更多
From the dried flower-buds of Panax ginseng C.A. Meyer, a new ndnor dammaranetype triterpene saponin named ginsenoside III was iso1ated. On the basis of spectral and chemical evidence, the structure of the new saponin...From the dried flower-buds of Panax ginseng C.A. Meyer, a new ndnor dammaranetype triterpene saponin named ginsenoside III was iso1ated. On the basis of spectral and chemical evidence, the structure of the new saponin was elucidated as 3 -O- [β-D -glucopyranosyl (1→2 ) - βD- glucopyranosyl] - 20-O-β-D-glucopyranosyl 3 β, 12β- 20(S) -trihydroxydammar- 25 - en- 24-one.展开更多
Panax ginseng C.A. Meyer is an endangered species in Russia. To restore this species, effective protective measures, including the reintroduction into favorable habitats, must be worked out considering the specificity...Panax ginseng C.A. Meyer is an endangered species in Russia. To restore this species, effective protective measures, including the reintroduction into favorable habitats, must be worked out considering the specificity of genetic structure of ginseng populations. One hundred and thirty-nine P. ginseng plants were collected from the forests of nine administrative areas of Primorsky Territory of Russia and transferred to a collection nursery for further investigation. Microsatellite markers were used to study the genetic diversity and the genetic structure of ginseng populations. For populations studied with SSR, the number of observed alleles was ranging from 15 to 25, allelic richness from 1.83 to 3.04, polymorphic loci from 62.5% to 87.7%, observed heterozygosity from 0.410 to 0.512 (an average of 0.453) and expected heterozygosity from 0.304 to 0.479, with an average of 0.393. The values of the inbreeding coefficient within populations (Fis) ranged from -0.447 to 0.056, and their average value was -0.296. Genetic differentiation among populations was significant (Fst = 0.115) but an isolation-by-distance pattern was not detected. UPGMA and MS-tree confirmed the presence of genetic structure within P. ginseng and visualized genetic relationships of populations with similar pattern. STRUCTURE analysis revealed the genetic admixture between different ginseng populations. It was established with SSR markers that P. ginseng still preserves substantial genetic resources although all populations are largely exhausted. Because ginseng populations are significantly differentiated all of them should be restored. Considering the admixture of ginseng populations it would be advisable to apply the individual assignment test to verify the content of indigenous populations and to identify the "true" population plants to serve as stock material for reintroduction.展开更多
基金This work was supported by an award from the Department of Science and Technology of Jilin Province(20210402043GH and 20210204063YY).
文摘Panax ginseng C.A.Mey.is an important plant species used in traditional Chinese medicine,whose primary active ingredient is a ginsenoside.Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes.Nonetheless,the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites.Squalene epoxidase(SQE)is a key enzyme in the mevalonic acid pathway,which affects the biosynthesis of secondary metabolites such as terpenoid.Using ginseng transcriptome,expression,and ginsenoside content databases,this study employed bioinformatic methods to systematically analyze the genes encoding SQE in ginseng.We first selected six PgSQE candidates that were closely involved in ginsenoside biosynthesis and then identified PgSQE08-01 to be highly associated with ginsenoside biosynthesis.Next,we constructed the overexpression vector pCAMBIA3301-PgSQE08-01 and the RNAi vector pART27-PgSQE08-01 and transformed ginseng adventitious roots using Agrobacterium rhizogenes,to obtain positive hairy-root clones.Thereafter,quantitative reverse transcriptionpolymerase chain reaction and high-performance liquid chromatography were used to determine the expression of relevant genes and ginsenoside content,respectively.Then,we focused on the function of PgSQE08-01 gene,which was noted to be involved in ginsenoside biosynthesis.Thus,these findings not only provided a molecular basis for the identification of important functional genes in ginseng but also enriched genetic resources for the biosynthesis of ginsenosides using synthetic biology.
文摘Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.
文摘An ocotillone type ginsenoside, together with 2 known ginsenosides was isolated from leaves of Panax ginseng and identified as pseudoginsenoside RT 5 on the basis of chemical and physicochemical evidences. It has been so far the first example of ocotillone type ginsenoside discovered in Panax ginseng and its plausible biotransformation pathway also discussed.
文摘The compositions and contents of ginsenbsides in Panax ginseng,P.quinquefolium and P.notoginseng were determined and compared by reversed-phase High-Performance Liquid Chro- matography(HPLC).The method was performed on an Alltech Adsorbosphere HS C_(18) column,using 5×10^(-3)M NaH_2PO_4-H_3PO_4 buffer solution(pH 3.0)and acetonitrile-water(50:50)as gradient eluents. The baseline separation of ginsenosides Rb_1,Rb_2,Rb_1,Rc,Rd,Rf,Ro,and Re+Rg_1 was obtained in one analytical run.The ginsenosides are directly detected at 203 nm.The detection limit is 40μg at a signal to noise ratio of 3:1.The improved sample preparation and clean-up prior to injection with SEP-PAK C_(18)cartridge strongly reduced the front peaks caused by the impurities in the methanolic extracts of samples to afford a smooth baseline and clear background.The HPLC patterns of methanolic extracts mainly including the ginsenosides were found capable of serving as chemical fingerprints to differentiate the three species from each other.It was also found that there are no significant diffe- rences of the HPLC patterns between the wild Panax ginseng and the cultivated,the white and the red ginsengs,Chinese and Korean red ginsengs,and the tap roots of Panax ginseng collected in four consecutive months,only certain differences in contents of ginsenosides do exist.The contents of the nine major ginsenosides present in the rhizome,tap root and rootlet as well as the leaf of Panax quinquefolium were also determined and compared.
基金supported by the National Natural Science Foundation of China,No.81660243the Joint Foundation of Department of Science and Technology of Guizhou Province of China,No.LG[2012]028the Science and Technology Department of Guizhou Province of China,No.qian SY[2015]3041
文摘Panax ginseng is a slow-growing perennial plant.Panax ginseng extract has numerous biological activities,including antitumor,anti-inflammatory and antistress activities.Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment.In this study,we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion,a wellknown model of vascular dementia.The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract.Morris water maze and balance beam tests were used to evaluate memory deficits and motor function,respectively.Protein quantity was used to evaluate cholinergic neurons.Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells.Western blot assay was used to evaluate protein levels of vascular endothelial growth factor,basic fibroblast growth factor,Bcl-2 and Bax.Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and b FGF protein expression in the hippocampal CA3 area.Furthermore,Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells,and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression.The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine,a commonly used drug for the treatment of vascular dementia.These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion,and therefore might have therapeutic potential for preventing and treating the disease.
基金The Ninth 5-year Plan" Key Science and Technique R & D Programme Foundation of China (96-901-01-12A).
文摘A novel dammarane-type triterpene oligoglycoside, named ginsenoside-Rg6 3, was isolated from the stem-leaves of Panax ginseng C. A. Mey., together with two known ones, 20(S)-ginsenoside-Rg2 1 and 20(R)-ginsenoside-Rg2 2. On the basis of chemical and physicochemical evidence , the structure of ginsenoside-Rg6 have been elucidated as 6-O-(-L-rhamnosyl-(1?2)-(-D-glucopyranosyl-dammarane-(E)-20(22), 24-diene-3(, 6(, 12(-triol.
基金This research was supported by Department of Wildlife Conservation, State Forestry Administration, P. R. China.
文摘An orthogonal design was used to optimize SSR-PCR amplification system using Panax ginseng genomic DNA as template. Four levels of five factors (DNA template, Taq DNA polymerase, Mg^2+, primer, and dNTP) and annealing temperature have been tested separately in this system. The results demonstrated the reaction efficiency was affected by these factors. Based on the results, a stable, productive and reproducible PCR system and cycling program for amplifying a ginseng SSR locus were obtained: 20 μL system containing 1.0 U Taq DNA polymerase, 2.0 mmol·L^-1 Mg^2+, 0.2 mmol·L^-1 dNTPs, 0.3 μmol·L^-1 SSR primer, 60 ng· μla^-1 DNA template, performed with a program of 94℃ for 5 min, 94℃ for 30 s, annealing at 56.3℃ for 30 s, 72℃ for 1 min, 37 cycles, finishing at 72℃ for 7 min, and storing at 4℃.
基金supported by Changchun Science and Technology Program Project(No.08YJ41)
文摘A new panaxadiol (compound 1) was obtained from the acid hydrolysate of the total ginsenosides of Panax ginseng C. A. Meyer (Araliaceae). On the basis of spectroscopic data and single-crystal X-ray diffraction data, its chemical structure was elucidated to be dammar-(E)-20(22)-ene-3β,12β,25 -tfiol.
基金Supported by the Key Project of Jilin Provincial Science and Technology Department, China(No.20090908)the Project of Changchun Science and Technology Bureau, China(No.2008256)the Special Cooperative Project for Hitech Industrializa-tion of Jilin Provincial Science and Chinese Academy of Sciences, China(No.2009SYHZ0026)
文摘A high performance liquid chromatography coupled with electrospray ionization-tandem mass spectrome try(HPLC-ESI-MS/MS) method was developed for the analysis and identification of ginsenosides in the extracts of raw Panax ginseng(RPG) and steamed Panax ginseng at high temperatures(SPGHT). A total of 25 ginsenosides were extracted include of which 10 low-polar ginsenosides, such as ginsenosides F4, Rk3, Rh4, 20S-Rg3, 20R-Rg3 and so on, were identified according to their HPLC retention time and MS/MS data. The results indicated that the low polar ginsenosides were seldom found in RPG. For the exploration of the transformation pattern of the ginsenosides in steam processing, the standards of ginsenosides Re, Rg1, Rb1, Rc, Rb2, Rb3 and Rd were selected and hydrolyzed at a temperature of 120 oC. The results show that these polar ginsenosides can be converted to low-polar ginsenosides such as Rg2, Rg6, F4, Rk3 and Rg5 by hydrolyzing the sugar chains.
文摘BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells (NSCs) proliferation and differentiation into dopaminergic neurons using in vitro studies, and to observe NSC differentiation in a mouse model of Parkinson's disease, as well as behavioral changes before and after transplantation. DESIGN, TIME AND SETTING: In vitro neural cell biology trial and in vivo randomized, controlled animal trial were performed at the Institute of Basic Medical Sciences, Chongqing Medical University between September 2004 and December 2007. MATERIALS: TSPG (purity 〉 95%) was isolated, extracted, and identified by Chongqing Academy of Chinese Materia Medica. Recombinant human basic fibroblast growth factor (bFGF) and recombinant human epidermal growth factor (EGF) were purchased from PeproTech, USA. A total of 25 C57/BL6J mice, aged 18-20 weeks were included. Twenty were used to establish a Parkinson's disease model with i.p. injection of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) and TSPG alone or combined with interleukin-1 (IL-1)-treated NSCs prior to transplantation into the corpus striatum. The remaining five mice were pretreated for 3 days with TSPG prior to MPTP injection, serving as the TSPG prevention group. METHODS: Primary NSCs were isolated, cultured and purified from embryonic cerebral cortex. Immunocytochemistry was employed to detect specific antigen expression in the NSCs. In vitro experiment: (1) to induce proliferation, NSCs were treated with TSPG, EGF+bFGF, or TSPG+EGF+bFGF, respectively; (2) to induce dopaminergic neuronal differentiation, NSCs were treated with TSPG, IL-1, or TSPG+IL-1, respectively. MAIN OUTCOME MEASURES: In vitro experiment: the effects of TSPG on NSCs proliferation were evaluated with flow cytometry and MTT assay. Tyrosine hydroxylase expression was determined by immunocytochemistry assay to observe effects of TSPG on dopaminergic neuronal differentiation. In vivo experiment: differentiation of grafted NSCs in the mouse brain was determined by immunohistochemical staining. Behavioral changes were evaluated by spontaneous activity frequency, memory function, and score of paralysis agitans. RESULTS: (1) NSCs were cultured and passaged for more than three passages. Immunocytochemistry revealed positive nestin staining, as well as neurofilament protein and glial fibrillary acidic protein. (2) TSPG significantly increased NSC proliferation, in particular when combined with EGF and bFGF, which was twice as effective as FGF or bFGF alone. TSPG also induced dopaminergic differentiation in NSCs, in particular when TSPG was added together with IL-1, resulting in an effect five times greater than that of IL-1 alone. (3) At day 30 following transplantation, most NSCs in the TSPG prevention group differentiated into dopaminergic neurons, and the scores of paralysis agitans, spontaneous activity, and memory function were significantly increased compared with TSPG alone or TSPG+IL-1 groups (P 〈 0.05). CONCLUSION: TSPG stimulated NSC proliferation, in particular when combined with FGF and bFGF. TSPG significantly induced dopaminergic neuronal differentiation of NSCs, and the effect was greater when combined with IL-1. In addition, TSPG greatly improved behavior in the Parkinson's disease mouse model following NSC transplantation. Following NSC transplantation, TSPG pretreatment exhibited superior efficacy over either TSPG alone or TSPG in combination with IL-1, in terms of behavioral improvements in the Parkinson's disease mouse model.
文摘A water-soluble pectin SB_~1-1 was isolated and purified from the root of Panax ginseng C. A. Mey. The HPLC analysis indicates that SB_~1-1 is homogenous. Its molecular weight was estimated via gel filtration to be 10000. The GC analysis indicated that it contains the monosaccharides of GalA, Gal, Ara and Rha. Their molar ratio is 2.10∶1.00∶0.12∶0.13. Partial hydrolysis with acid, pectinase treatment, periodate oxidation, Smith degradation, methylation analyses, GC/MS analyses and NMR analyses were used for the structure analyses of SB_~1-1 . The results reveal that SB_~1-1 has a lower branched structure. The main chain is composed of GalA and Gal; the inner part is α-1,4-linked-GalA; the border is 1,4-linked-Gal. Some of the 1,4-linked-GalA and 1,4-linked-Gal residues are substituted at O6. On an average, there is one branch for every ten hexose residues. The side chain is composed of 1,6-linked-Gal and 1,3,6-linked-Gal. The nonreduced end is composed of Rha, Ara and Gal. The main glycosidic link of SB_~1-1 has an α configuration.
文摘Korean ginseng and mountain ginseng (Panax ginseng CA Meyer) are important traditional herbal plants whose ginsenosides are generally accepted as serving to improve sexual functions, such as penile erection. We investigated the effects of tissue-cultured mountain ginseng extract (TMGE) on male patients with erectile dysfunction (ED). A double-blind, placebo-controlled study was conducted with 143 patients experiencing ED. Over the course of 8 weeks, one group took 1 000 mg of TMGE twice a day, and the other group took 1 000 mg of placebo twice a day. The effects of the TMGE and the placebo were analyzed using the Korean version of the International Index of Erectile Function (IIEF) questionnaire. A total of 86 patients completed 8 weeks of treatment. The scores on the five domains of the IIEF after medication were significantly higher than the baseline scores in the group treated with TMGE (P 〈 0.05), whereas no significant improvement was observed in the placebo group (P 〉 0.05). Erectile function and overall satisfaction scores after medication were significantly higher in the TMGE group than in the placebo group (P 〈 0.05). Erectile function of patients in the TMGE-treated group significantly improved, suggesting that TMGE could be utilized for improving erectile function in male patients.
文摘American ginseng, Panax quinquefolius L., is an herbaceous perennial species that is destructively harvested for its bioactive compounds called ginsenosides. The demand for this herb fosters illegal poaching and over-harvesting that reduces genetic variability and population viability. Five wild populations in western North Carolina were studied to better understand the production of ginsenosides in leaf and root tissues. Total ginsenoside concentration was significantly higher in leaves than roots, though total yield was higher in roots due to greater root biomass. However, some ginsensosides (Rb2, Rd and Re) had higher or more consistent yields in leaves than roots, so might be developed into a sustainable source of these medicinally-active compounds. Additionally, we identified regional root chemotypes that differed in the production of the ginsenosides Rg1 and Re and could be developed into regional cultivars depending on the desired panel of ginsenosides.
基金Project(61533021)supported by the National Natural Science Foundation of ChinaProject(R201706)supported by Hunan Food Pharmaceutical,China
文摘A new reaction system to determine nonlinear chemical fingerprint(NCF)and its use in identification method based on double reaction system was researched.Panax ginsengs,such as ginseng,American ginseng and notoginseng were identified by the method.The NCFs of the three samples of Panax ginsengs were determined through two nonlinear chemical systems,namely system 1 consisting of sample components,H2SO4,MnSO4,NaBrO3,acetone and the new system,system 2 consisting of sample components,H2SO4,(NH4)4Ce(SO4)2,NaBrO3 and citric acid.The comparison between the results determined through systems 1 and 2 shows that the speed to determine NCF through system 2 is much faster than that through system 1;for systems 1 and 2,the system similarities of the same kind of samples are≥98.09%and 99.78%,respectively,while those of different kinds of samples are≤63.04%and 86.34%,respectively.The results to identify the kinds of some samples by system similarity pattern show that both the accuracies of identification methods based on single system 1 and 2 are≥95.6%,and the average values are 97.1%and 96.3%,respectively;the accuracy of the method based on double system is≥97.8%,and the average accuracy is 99.3%.The accuracy of the method based on double system is higher than that based on any single system.
文摘A new compound, 3,6,20(S)-trihydroxy- 12,23-epoxydammar-24-ene,6,20-di-O-β-D-glucopyranoside (1), was isolated from the leaves of Panax ginseng C.A. Meyer, whose structural elucidation was carried out by means of spectral analysis (including IR, HR- FAB-MS and NMR). This compound showed the moderate cytotoxic activities against U937 and HeLa cells by using the MTT method.
文摘From the dried flower-buds of Panax ginseng C.A. Meyer, a new ndnor dammaranetype triterpene saponin named ginsenoside III was iso1ated. On the basis of spectral and chemical evidence, the structure of the new saponin was elucidated as 3 -O- [β-D -glucopyranosyl (1→2 ) - βD- glucopyranosyl] - 20-O-β-D-glucopyranosyl 3 β, 12β- 20(S) -trihydroxydammar- 25 - en- 24-one.
文摘Panax ginseng C.A. Meyer is an endangered species in Russia. To restore this species, effective protective measures, including the reintroduction into favorable habitats, must be worked out considering the specificity of genetic structure of ginseng populations. One hundred and thirty-nine P. ginseng plants were collected from the forests of nine administrative areas of Primorsky Territory of Russia and transferred to a collection nursery for further investigation. Microsatellite markers were used to study the genetic diversity and the genetic structure of ginseng populations. For populations studied with SSR, the number of observed alleles was ranging from 15 to 25, allelic richness from 1.83 to 3.04, polymorphic loci from 62.5% to 87.7%, observed heterozygosity from 0.410 to 0.512 (an average of 0.453) and expected heterozygosity from 0.304 to 0.479, with an average of 0.393. The values of the inbreeding coefficient within populations (Fis) ranged from -0.447 to 0.056, and their average value was -0.296. Genetic differentiation among populations was significant (Fst = 0.115) but an isolation-by-distance pattern was not detected. UPGMA and MS-tree confirmed the presence of genetic structure within P. ginseng and visualized genetic relationships of populations with similar pattern. STRUCTURE analysis revealed the genetic admixture between different ginseng populations. It was established with SSR markers that P. ginseng still preserves substantial genetic resources although all populations are largely exhausted. Because ginseng populations are significantly differentiated all of them should be restored. Considering the admixture of ginseng populations it would be advisable to apply the individual assignment test to verify the content of indigenous populations and to identify the "true" population plants to serve as stock material for reintroduction.