One new Iriterpene saponin was isolated from Panaxjaponicus C. A. Meyer var major (Burk.) C. Y. Wu et K. M. Feng, and established as oleanolic acid 3-O-[β-D-glucopyranosyl-(1 →2)-β-D-glucuronopyranosyl-6'-O-n-...One new Iriterpene saponin was isolated from Panaxjaponicus C. A. Meyer var major (Burk.) C. Y. Wu et K. M. Feng, and established as oleanolic acid 3-O-[β-D-glucopyranosyl-(1 →2)-β-D-glucuronopyranosyl-6'-O-n-butyl ester] which showed mod- erate antitumor activities against the A2780 cells and OVCAR-3 cells. Its structure was established by means of spectral data, particularly NMR, including HSQC and HMBC techniques.展开更多
Panax japonicus and its approximation varieties,such as Rhizoma Panacis Majoris and Panax japonicus C. A. Mey. var.major (Burk.) C.Y. Wu et K.M. Feng belong to Panax,which are less commonly used traditional Chinese ...Panax japonicus and its approximation varieties,such as Rhizoma Panacis Majoris and Panax japonicus C. A. Mey. var.major (Burk.) C.Y. Wu et K.M. Feng belong to Panax,which are less commonly used traditional Chinese medicine. Because of similar traits and effectiveness,they were always used as one type of medicine for a long time. Aiming at this phenomenon,the chemical composition and contents of P. japonicus and its approximation varieties from different area were compared in order to provide a chemical basis for clarifying the classification of the genus.展开更多
An orthogonal design was used to optimize SSR-PCR amplification system using Panax ginseng genomic DNA as template. Four levels of five factors (DNA template, Taq DNA polymerase, Mg^2+, primer, and dNTP) and anneal...An orthogonal design was used to optimize SSR-PCR amplification system using Panax ginseng genomic DNA as template. Four levels of five factors (DNA template, Taq DNA polymerase, Mg^2+, primer, and dNTP) and annealing temperature have been tested separately in this system. The results demonstrated the reaction efficiency was affected by these factors. Based on the results, a stable, productive and reproducible PCR system and cycling program for amplifying a ginseng SSR locus were obtained: 20 μL system containing 1.0 U Taq DNA polymerase, 2.0 mmol·L^-1 Mg^2+, 0.2 mmol·L^-1 dNTPs, 0.3 μmol·L^-1 SSR primer, 60 ng· μla^-1 DNA template, performed with a program of 94℃ for 5 min, 94℃ for 30 s, annealing at 56.3℃ for 30 s, 72℃ for 1 min, 37 cycles, finishing at 72℃ for 7 min, and storing at 4℃.展开更多
[Objectives]To explore effective biocontrol methods for diseases in the process of ginseng cultivation,and develop an efficient and environmentally friendly biocontrol agent.[Methods]In this study,2 strains were isola...[Objectives]To explore effective biocontrol methods for diseases in the process of ginseng cultivation,and develop an efficient and environmentally friendly biocontrol agent.[Methods]In this study,2 strains were isolated from biogas slurry,and Cylindrocarpon destructans(XF),Fusarium solani(GF),Botrytis cinerea Pers(HM)and Alternaria panax Whetz(HB)were used as test materials.The strains were isolated and identified by dilution plate method,16S rDNA sequence identification method,confrontation culture method,filter paper method and ultraviolet spectrophotometer method,and the bacteriostatic activity and bacteriostatic rate were tested.[Results]Strain 15(Sphingomonas)and strain 19(Pseudomonas aeruginosa)were screened out through identification and analysis,and they grew stably within 8-10 d.The bacteriostatic rates of strain 15 against A.panax and B.cinerea were 47.37%and 43.40%,respectively,and the bacteriostatic rates of strain 19 against A.panax and B.cinerea were 62.30%and 63.27%,respectively.The bacteriostatic activity of the extract of strain 19 increased with the increase of OD_(600) value,and the bacteriostatic effect was optimal when the OD_(600) value was in the range of 0.8-1.0,up to 70%,so it had a strong biocontrol potential.[Conclusions]This experiment provides convenience for more effective inoculation,establishes a fast,simple and accurate method for the determination of the best bacteriostatic rate of P.aeruginosa culture solution to HM,and lays a foundation for large-scale culture of P.aeruginosa culture solution.Besides,it is expected to provide a theoretical basis for the efficient control of ginseng B.cinerea in field production,use it for the prevention and control of ginseng shoot diseases,and provide a reference for the efficient and diverse development of biocontrol agents for ginseng shoot diseases.展开更多
Objective Tu Jia ethnomedicine is a unique medical system inherited and adhibited by Tu Jia minority living in central-south China. Panax japonicus C. A. Mey.(Bai San Qi,白三七) is recognized as an effective and rare ...Objective Tu Jia ethnomedicine is a unique medical system inherited and adhibited by Tu Jia minority living in central-south China. Panax japonicus C. A. Mey.(Bai San Qi,白三七) is recognized as an effective and rare medicinal plant to treat weakness, fatigue and rheumatism in Tu Jia ethnomedicine. This paper is to discover more substance evidence for the application of Tu Jia ethnomedicine. Methods Column chromatography and preparative high performance liquid chromatography (HPLC) was applied for isolation and purification;1H-NMR, 13C-NMR, 1H-1H COSY, HSQC and HMBC NMR spectra were applied for structure identification;Methyl thiazolyl tetrazolim (MTT) assays were applied for cytotoxicity evaluation. Results Totally 12 known compounds were isolated by column chromatography and preparative HPLC from rhizomes of Panax japonicus C. A. Mey.(Bai San Qi,白三七). Structures of these compounds were identified by their NMR spectra. All the 12 compounds were triterpenoid saponins. Five of them were oleanolic acid type, and the remaining 7 were dammarane type. Eleven compounds were assayed for their cytotoxic activity against Hep G2 human liver cancer cell lines and BGC-823 human gastric cancer cell lines. Three of the 11 showed relatively dominant cytotoxicity against these cell lines. Conclusions A total of 12 known compounds have been identified from Panax japonicus C. A. Mey.(Bai San Qi,白三七);NMR spectra of compounds with similar skeletons showed regular characteristics;3 compounds showed relatively dominant cytotoxicity against Hep G2 and BGC-823 cancer cell lines, and the result can be valued as weak while setting the taxol as a positive control.展开更多
Water-soluble polysaccharides were prepared from Panax japonicus by hot water extraction and ethanol precipitation.The polysaccharides were further purified by ion exchange chromatography to obtain neutral and acidic ...Water-soluble polysaccharides were prepared from Panax japonicus by hot water extraction and ethanol precipitation.The polysaccharides were further purified by ion exchange chromatography to obtain neutral and acidic polysaccharides.The neutral polysaccharide fraction mainly contained Glc(90.2%),which was a glucan fraction.The acidic polysaccharide fraction mainly contained GalA(43.6%),Gal(21.7%),and Ara(15.4%),with a degree of methyl-esterification of 20.3%,which was a pectic polysaccharide.The acidic polysaccharide of Panax japonicus could effectively inhibit the replication of human seasonal influenza virus H1N1 and canine influenza virus H3N2 in MDCK cells and A549 cells and significantly reduce the virus titer in infected cells.It also effectively inhibited the number of infected cells of the SARS-CoV-2 South Africa strain and the Omicron strain.The acid polysaccharide of Panax japonicus showed good efficacy against influenza virus and COVID-19 infection,which could be used as a potential antiviral candidate drug molecule in the future.展开更多
Panax japonicus, which in the Tujia dialect is known as "Baisan Qi" and "Zhujieshen", is a classic "qi" drug of Tujia ethnomedicine and it has unique effects on disease caused by "qi...Panax japonicus, which in the Tujia dialect is known as "Baisan Qi" and "Zhujieshen", is a classic "qi" drug of Tujia ethnomedicine and it has unique effects on disease caused by "qi" stagnation and blood stasis.This paper serves as the basis of further scientific research and development of Panax japonicus. The pharmacology effects of molecular pharmacology were discussed and summarized. P. japonicus plays an important role on several diseases, such as rheumatic arthritis, cancer, cardiovascular agents, and this review provides new insights into P. japonicus as promising agents to substitute ginseng and notoginseng.展开更多
Abstract: To explore the mode of the spatio-temporal expression of six newly discovered ginsenoside biosynthesis candidate gene transcripts, both Northern blotting and semi-quantitative reverse transcription-polymeras...Abstract: To explore the mode of the spatio-temporal expression of six newly discovered ginsenoside biosynthesis candidate gene transcripts, both Northern blotting and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) were used to elucidate the mRNA expression levels of the transcripts in various tissues and organs of Panax ginseng C. A. Meyer during different growth development stages. The six gene transcripts were all differentially expressed in cultured callus, root, stem, leaf, and seed. The mRNA expression levels were significantly higher in four-year-old roots than in one-year-old roots, and results of semi-quantitative RT-PCR assays were in accordance with those of Northern blotting analyses. The results strongly suggest that all six genes were differentially expressed at root-specific developmental stages. In particular, when a quiescent early stage culture suspension of P. ginseng cells was exposed to the ginsenoside biosynthesis-promoting elicitor Aspergillus niger polysaccharide, the GBR6 gene transcript response showed time-dependent increments and was parallel with ginsenoside productivity (P < 0.01). Overexpressionof the GBR6 gene is likely to play a critically important role in the biosynthesis of ginsenosides. The results of the present study provided a background for the further elucidation of the structure and physiological function of these six candidate genes.展开更多
Objective:Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation.Both pathogens and antagonistic fungi have been reported to induce plant resistance responses,thereby promoting the accumulation of sec...Objective:Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation.Both pathogens and antagonistic fungi have been reported to induce plant resistance responses,thereby promoting the accumulation of secondary metabolites.The purpose of this experiment is to compare the advantages of one of the two fungi,in order to screen out more effective elicitors.The mechanism of fungal elicitor-induced plant resistance response is supplemented.Methods:A gradient dilution and the dural culture were carried out to screen strains.The test strain was identified by morphology and 18 s rDNA.The effect of different concentrations(0,50,100,200,400 mg/L)ofPenicillium sp.YJM-2013 and F.oxysporum on fresh weight and ginsenosides accumulation were tested.Signal molecules transduction,expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors.Results:Antagonistic fungi ofF.oxysporum was identified as Penicillium sp.YJM-2013,which reduced root biomass.The total ginsenosides content of Panax ginseng adventitious roots reached the maximum(48.95±0.97 mg/g)treated with Penicillium sp.YJM-2013 at 200 mg/L,higher than control by 2.59-fold,in which protopanoxadiol-type ginsenosides(PPD)were increased by 4.57 times.Moreover,Penicillium sp.YJM-2013 activated defense signaling molecules,up-regulated the expression of PgWRKY 1,2,3,5,7,9 and functional genes in ginsenosides synthesis.Conclusion:Compared with the pathogenic fungi F.oxysporum,antagonistic fungi Penicillium sp.YJM-2013 was more conducive to the accumulation of ginsenosides in P.ginseng adventitious roots.Penicillium sp.YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules,activating the expression of transcription factors and functional genes.展开更多
基金financially supported by Chinese Academy of Nutritional Sciences,Shanghai Institutes for Biological Sciences
文摘One new Iriterpene saponin was isolated from Panaxjaponicus C. A. Meyer var major (Burk.) C. Y. Wu et K. M. Feng, and established as oleanolic acid 3-O-[β-D-glucopyranosyl-(1 →2)-β-D-glucuronopyranosyl-6'-O-n-butyl ester] which showed mod- erate antitumor activities against the A2780 cells and OVCAR-3 cells. Its structure was established by means of spectral data, particularly NMR, including HSQC and HMBC techniques.
基金Supported by the National Natural Foundation of China(30873383)~~
文摘Panax japonicus and its approximation varieties,such as Rhizoma Panacis Majoris and Panax japonicus C. A. Mey. var.major (Burk.) C.Y. Wu et K.M. Feng belong to Panax,which are less commonly used traditional Chinese medicine. Because of similar traits and effectiveness,they were always used as one type of medicine for a long time. Aiming at this phenomenon,the chemical composition and contents of P. japonicus and its approximation varieties from different area were compared in order to provide a chemical basis for clarifying the classification of the genus.
基金This research was supported by Department of Wildlife Conservation, State Forestry Administration, P. R. China.
文摘An orthogonal design was used to optimize SSR-PCR amplification system using Panax ginseng genomic DNA as template. Four levels of five factors (DNA template, Taq DNA polymerase, Mg^2+, primer, and dNTP) and annealing temperature have been tested separately in this system. The results demonstrated the reaction efficiency was affected by these factors. Based on the results, a stable, productive and reproducible PCR system and cycling program for amplifying a ginseng SSR locus were obtained: 20 μL system containing 1.0 U Taq DNA polymerase, 2.0 mmol·L^-1 Mg^2+, 0.2 mmol·L^-1 dNTPs, 0.3 μmol·L^-1 SSR primer, 60 ng· μla^-1 DNA template, performed with a program of 94℃ for 5 min, 94℃ for 30 s, annealing at 56.3℃ for 30 s, 72℃ for 1 min, 37 cycles, finishing at 72℃ for 7 min, and storing at 4℃.
基金Project of Jilin Provincial Department of Science and Technology(20200403028SF,20200402040NC)Project of Yanbian Korean Autonomous Prefecture Bureau of Science and Technology(2019NS11).
文摘[Objectives]To explore effective biocontrol methods for diseases in the process of ginseng cultivation,and develop an efficient and environmentally friendly biocontrol agent.[Methods]In this study,2 strains were isolated from biogas slurry,and Cylindrocarpon destructans(XF),Fusarium solani(GF),Botrytis cinerea Pers(HM)and Alternaria panax Whetz(HB)were used as test materials.The strains were isolated and identified by dilution plate method,16S rDNA sequence identification method,confrontation culture method,filter paper method and ultraviolet spectrophotometer method,and the bacteriostatic activity and bacteriostatic rate were tested.[Results]Strain 15(Sphingomonas)and strain 19(Pseudomonas aeruginosa)were screened out through identification and analysis,and they grew stably within 8-10 d.The bacteriostatic rates of strain 15 against A.panax and B.cinerea were 47.37%and 43.40%,respectively,and the bacteriostatic rates of strain 19 against A.panax and B.cinerea were 62.30%and 63.27%,respectively.The bacteriostatic activity of the extract of strain 19 increased with the increase of OD_(600) value,and the bacteriostatic effect was optimal when the OD_(600) value was in the range of 0.8-1.0,up to 70%,so it had a strong biocontrol potential.[Conclusions]This experiment provides convenience for more effective inoculation,establishes a fast,simple and accurate method for the determination of the best bacteriostatic rate of P.aeruginosa culture solution to HM,and lays a foundation for large-scale culture of P.aeruginosa culture solution.Besides,it is expected to provide a theoretical basis for the efficient control of ginseng B.cinerea in field production,use it for the prevention and control of ginseng shoot diseases,and provide a reference for the efficient and diverse development of biocontrol agents for ginseng shoot diseases.
基金the funding support from the National Natural Science Foundation of China (No. 81703819 and No. 81874369)Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine (No. 2017-04)+1 种基金Hunan Provincial Key Laboratory of Dong Medicine (No. 2015TP1020-02)Students Research Innovative Program of Hunan Province (No. 2018413)
文摘Objective Tu Jia ethnomedicine is a unique medical system inherited and adhibited by Tu Jia minority living in central-south China. Panax japonicus C. A. Mey.(Bai San Qi,白三七) is recognized as an effective and rare medicinal plant to treat weakness, fatigue and rheumatism in Tu Jia ethnomedicine. This paper is to discover more substance evidence for the application of Tu Jia ethnomedicine. Methods Column chromatography and preparative high performance liquid chromatography (HPLC) was applied for isolation and purification;1H-NMR, 13C-NMR, 1H-1H COSY, HSQC and HMBC NMR spectra were applied for structure identification;Methyl thiazolyl tetrazolim (MTT) assays were applied for cytotoxicity evaluation. Results Totally 12 known compounds were isolated by column chromatography and preparative HPLC from rhizomes of Panax japonicus C. A. Mey.(Bai San Qi,白三七). Structures of these compounds were identified by their NMR spectra. All the 12 compounds were triterpenoid saponins. Five of them were oleanolic acid type, and the remaining 7 were dammarane type. Eleven compounds were assayed for their cytotoxic activity against Hep G2 human liver cancer cell lines and BGC-823 human gastric cancer cell lines. Three of the 11 showed relatively dominant cytotoxicity against these cell lines. Conclusions A total of 12 known compounds have been identified from Panax japonicus C. A. Mey.(Bai San Qi,白三七);NMR spectra of compounds with similar skeletons showed regular characteristics;3 compounds showed relatively dominant cytotoxicity against Hep G2 and BGC-823 cancer cell lines, and the result can be valued as weak while setting the taxol as a positive control.
基金supported by National Key Research and Development Program of China(2023YFC0871100)
文摘Water-soluble polysaccharides were prepared from Panax japonicus by hot water extraction and ethanol precipitation.The polysaccharides were further purified by ion exchange chromatography to obtain neutral and acidic polysaccharides.The neutral polysaccharide fraction mainly contained Glc(90.2%),which was a glucan fraction.The acidic polysaccharide fraction mainly contained GalA(43.6%),Gal(21.7%),and Ara(15.4%),with a degree of methyl-esterification of 20.3%,which was a pectic polysaccharide.The acidic polysaccharide of Panax japonicus could effectively inhibit the replication of human seasonal influenza virus H1N1 and canine influenza virus H3N2 in MDCK cells and A549 cells and significantly reduce the virus titer in infected cells.It also effectively inhibited the number of infected cells of the SARS-CoV-2 South Africa strain and the Omicron strain.The acid polysaccharide of Panax japonicus showed good efficacy against influenza virus and COVID-19 infection,which could be used as a potential antiviral candidate drug molecule in the future.
基金financially supported by Natural Science Foundation of Hunan Province (No. 2017JJ5041, 2018JJ2293)the National Key R&D Program of China (No. 2018YFC1707900)+1 种基金National Natural Science Foundation of China (No. 81703819, 81874369, 81803708, 81673579 and 81374062)Key Research and Development Programs of Hunan Science and Technology Department (No. 2018SK2113, 2018SK2119, 2018WK2081)。
文摘Panax japonicus, which in the Tujia dialect is known as "Baisan Qi" and "Zhujieshen", is a classic "qi" drug of Tujia ethnomedicine and it has unique effects on disease caused by "qi" stagnation and blood stasis.This paper serves as the basis of further scientific research and development of Panax japonicus. The pharmacology effects of molecular pharmacology were discussed and summarized. P. japonicus plays an important role on several diseases, such as rheumatic arthritis, cancer, cardiovascular agents, and this review provides new insights into P. japonicus as promising agents to substitute ginseng and notoginseng.
文摘Abstract: To explore the mode of the spatio-temporal expression of six newly discovered ginsenoside biosynthesis candidate gene transcripts, both Northern blotting and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) were used to elucidate the mRNA expression levels of the transcripts in various tissues and organs of Panax ginseng C. A. Meyer during different growth development stages. The six gene transcripts were all differentially expressed in cultured callus, root, stem, leaf, and seed. The mRNA expression levels were significantly higher in four-year-old roots than in one-year-old roots, and results of semi-quantitative RT-PCR assays were in accordance with those of Northern blotting analyses. The results strongly suggest that all six genes were differentially expressed at root-specific developmental stages. In particular, when a quiescent early stage culture suspension of P. ginseng cells was exposed to the ginsenoside biosynthesis-promoting elicitor Aspergillus niger polysaccharide, the GBR6 gene transcript response showed time-dependent increments and was parallel with ginsenoside productivity (P < 0.01). Overexpressionof the GBR6 gene is likely to play a critically important role in the biosynthesis of ginsenosides. The results of the present study provided a background for the further elucidation of the structure and physiological function of these six candidate genes.
基金The work was supported by National Natural Science Foundation of China NSFC(No.81703639).
文摘Objective:Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation.Both pathogens and antagonistic fungi have been reported to induce plant resistance responses,thereby promoting the accumulation of secondary metabolites.The purpose of this experiment is to compare the advantages of one of the two fungi,in order to screen out more effective elicitors.The mechanism of fungal elicitor-induced plant resistance response is supplemented.Methods:A gradient dilution and the dural culture were carried out to screen strains.The test strain was identified by morphology and 18 s rDNA.The effect of different concentrations(0,50,100,200,400 mg/L)ofPenicillium sp.YJM-2013 and F.oxysporum on fresh weight and ginsenosides accumulation were tested.Signal molecules transduction,expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors.Results:Antagonistic fungi ofF.oxysporum was identified as Penicillium sp.YJM-2013,which reduced root biomass.The total ginsenosides content of Panax ginseng adventitious roots reached the maximum(48.95±0.97 mg/g)treated with Penicillium sp.YJM-2013 at 200 mg/L,higher than control by 2.59-fold,in which protopanoxadiol-type ginsenosides(PPD)were increased by 4.57 times.Moreover,Penicillium sp.YJM-2013 activated defense signaling molecules,up-regulated the expression of PgWRKY 1,2,3,5,7,9 and functional genes in ginsenosides synthesis.Conclusion:Compared with the pathogenic fungi F.oxysporum,antagonistic fungi Penicillium sp.YJM-2013 was more conducive to the accumulation of ginsenosides in P.ginseng adventitious roots.Penicillium sp.YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules,activating the expression of transcription factors and functional genes.