期刊文献+
共找到350,714篇文章
< 1 2 250 >
每页显示 20 50 100
How R&D investment promotes green technology innovation in the context of digitalization?-An empirical analysis based on provincial panel data
1
作者 LIU Jie LI Zhi-hui WEI Fang-xin 《Ecological Economy》 2024年第1期39-52,共14页
Green technology innovation is an important driving force and source to promote my country’s high-quality development,and it is the core path to achieve sustainable development.This paper uses my country’s provincia... Green technology innovation is an important driving force and source to promote my country’s high-quality development,and it is the core path to achieve sustainable development.This paper uses my country’s provincial panel data from 2016 to 2019 to study the impact mechanism of R&D investment on green technology innovation,and introduces the level of digitization,using the panel threshold model to discuss its role in the impact mechanism of R&D investment on green technology innovation.The study found that when the level of digitalization in a region is low,increasing R&D investment does not necessarily improve the ability of green technology innovation;when the level of digitalization is relatively high,R&D investment has a positive role in promoting green technology innovation.Therefore,it is necessary to improve policies to encourage enterprises to increase investment in research and development;at the same time,it is necessary to promote the coordinated development of digital foundation,digital investment,digital literacy,digital economy and digital application,and promote the deep integration of digitalization and green technology innovation. 展开更多
关键词 green technology innovation R&D investment digital level panel model
下载PDF
基于re3data的中英科学数据仓储平台对比研究 被引量:1
2
作者 袁烨 陈媛媛 《数字图书馆论坛》 2024年第2期13-23,共11页
以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛... 以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛联结国内外异质机构,推进多学科领域的交流与合作,有效扩充仓储许可权限与类型,优化技术标准的应用现况,提高元数据使用的灵活性。 展开更多
关键词 科学数据 数据仓储平台 re3data 中国 英国
下载PDF
基于Panel-data的区际产业转移粘性分析 被引量:19
3
作者 张存菊 苗建军 《软科学》 CSSCI 北大核心 2010年第1期75-79,共5页
利用面板数据模型,以江苏省为例,对28个制造业的科技进步、产业集群、区域人力资本积累、沉没成本和资产专用性、劳动力跨区域流动、制度创新、政府阻力等因素对产业转移粘性的关系进行了实证研究,并依据各个因素的贡献率得出了跨区域... 利用面板数据模型,以江苏省为例,对28个制造业的科技进步、产业集群、区域人力资本积累、沉没成本和资产专用性、劳动力跨区域流动、制度创新、政府阻力等因素对产业转移粘性的关系进行了实证研究,并依据各个因素的贡献率得出了跨区域产业转移的初步结论。 展开更多
关键词 panel—data模型 产业转移 阻力因素
下载PDF
Superiority of Bayesian Imputation to Mice in Logit Panel Data Models
4
作者 Peter Otieno Opeyo Weihu Cheng Zhao Xu 《Open Journal of Statistics》 2023年第3期316-358,共43页
Non-responses leading to missing data are common in most studies and causes inefficient and biased statistical inferences if ignored. When faced with missing data, many studies choose to employ complete case analysis ... Non-responses leading to missing data are common in most studies and causes inefficient and biased statistical inferences if ignored. When faced with missing data, many studies choose to employ complete case analysis approach to estimate the parameters of the model. This however compromises on the susceptibility of the estimates to reduced bias and minimum variance as expected. Several classical and model based techniques of imputing the missing values have been mentioned in literature. Bayesian approach to missingness is deemed superior amongst the other techniques through its natural self-lending to missing data settings where the missing values are treated as unobserved random variables that have a distribution which depends on the observed data. This paper digs up the superiority of Bayesian imputation to Multiple Imputation with Chained Equations (MICE) when estimating logistic panel data models with single fixed effects. The study validates the superiority of conditional maximum likelihood estimates for nonlinear binary choice logit panel model in the presence of missing observations. A Monte Carlo simulation was designed to determine the magnitude of bias and root mean square errors (RMSE) arising from MICE and Full Bayesian imputation. The simulation results show that the conditional maximum likelihood (ML) logit estimator presented in this paper is less biased and more efficient when Bayesian imputation is performed to curb non-responses. 展开更多
关键词 panel data IMPUTATION Monte Carlo BIAS Conditional Maximum Likelihood
下载PDF
开放式基金赎回问题研究——基于Panel-Data的Granger因果检验 被引量:9
5
作者 雷良桃 黎实 《南方经济》 北大核心 2007年第9期60-69,共10页
本文应用新近发展的Panel-Data Granger因果检验方法,检验开放式基金的赎回率和基金单位净值(NAPS)增长率以及基金累计净值(ACCNAV)增长率之间的因果关系。通过对2002年12月31日以前成立的17支基金的14个季度数据的研究发现:(1)基金单... 本文应用新近发展的Panel-Data Granger因果检验方法,检验开放式基金的赎回率和基金单位净值(NAPS)增长率以及基金累计净值(ACCNAV)增长率之间的因果关系。通过对2002年12月31日以前成立的17支基金的14个季度数据的研究发现:(1)基金单位净值增长率和基金累计净值增长率并不是基金赎回率的Granger原因,一直困扰着开放式基金的"赎回困惑"不过是一个"假象";(2)基金赎回率是基金单位净值增长率和基金累计净值增长率的Granger原因,高的基金赎回率大大的降低了基金单位净值增长率和基金累计净值增长率。 展开更多
关键词 panel—data GRANGER 因果检验 基金赎回基金净值
下载PDF
Panel-Data下Granger因果检验的理论和应用发展综述 被引量:9
6
作者 雷良桃 黎实 《统计与信息论坛》 2007年第3期48-53,共6页
Panel-Data下Granger因果检验的相关理论是最近几年才发展起来的,现有的研究提出了关于Panel-Data下Granger因果检验的四个基本假设:同质无因果关系假设(HNCH)、同质因果关系假设(HCH)、异质因果关系假设(HECH)以及异质无因果关系假设(H... Panel-Data下Granger因果检验的相关理论是最近几年才发展起来的,现有的研究提出了关于Panel-Data下Granger因果检验的四个基本假设:同质无因果关系假设(HNCH)、同质因果关系假设(HCH)、异质因果关系假设(HECH)以及异质无因果关系假设(HENCH),根据检验参数的特点给出三种类型的检验模型:固定系数模型、随机系数模型和混合固定随机系数模型。目前,还只有固定系数模型的相关理论较为完善,另外两种模型的检验还都存在一定的难度。因此,只有从理论研究和实际应用两个方面对该理论进行阐述,并对现有的理论进行简要的评述,才可指出其存在的不足及可能的改进方向。 展开更多
关键词 panel—data GRANGER因果检验 固定系数模型
下载PDF
Hadoop-based secure storage solution for big data in cloud computing environment 被引量:1
7
作者 Shaopeng Guan Conghui Zhang +1 位作者 Yilin Wang Wenqing Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期227-236,共10页
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose... In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average. 展开更多
关键词 Big data security data encryption HADOOP Parallel encrypted storage Zookeeper
下载PDF
Data Secure Storage Mechanism for IIoT Based on Blockchain 被引量:2
8
作者 Jin Wang Guoshu Huang +2 位作者 R.Simon Sherratt Ding Huang Jia Ni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4029-4048,共20页
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi... With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT. 展开更多
关键词 Blockchain IIoT data storage cryptographic commitment
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
9
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
运用Panel-data模型对河南省城镇居民消费行为的分析 被引量:1
10
作者 郭国峰 王博 《统计与决策》 CSSCI 北大核心 2006年第24期97-99,共3页
本文运用Panel-data模型对2000-2004年河南省城镇居民消费行为进行研究,分析收入等级因素和时间因素对居民消费的影响,得到河南省收入等级差异对居民消费行为有较大的影响,同时随着时间的变化河南省城镇居民消费行为也发生较大的变化。
关键词 panel—data模型 居民消费 地区因素 时间因素
下载PDF
新疆各区域产业结构对经济增长的贡献研究——基于panel-data的实证分析 被引量:2
11
作者 张丽 黄卫东 《新疆财经》 2009年第3期11-15,34,共6页
新疆地域广大,各区域经济发展很不平衡,区域产业结构对经济增长的贡献有很大不同。本文通过panel-data计量模型,采用1978年-2007年(1978=100)30年的统计数据,对新疆各区域产业结构对经济增长的贡献作用进行了实证分析,得出一些启示和建... 新疆地域广大,各区域经济发展很不平衡,区域产业结构对经济增长的贡献有很大不同。本文通过panel-data计量模型,采用1978年-2007年(1978=100)30年的统计数据,对新疆各区域产业结构对经济增长的贡献作用进行了实证分析,得出一些启示和建议,为政府优化产业结构、促进区域经济协调发展提供理论依据。 展开更多
关键词 新疆 区域产业结构 panel—data模型
下载PDF
Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation 被引量:1
12
作者 Sujeong Byun Jinyeong Yu +3 位作者 Seho Cheon Seong Ho Lee Sung Hyuk Park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期186-196,共11页
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w... Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys. 展开更多
关键词 Plastic anisotropy Compression ANNEALING Machine learning data augmentation
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
13
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
14
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
我国旅游经济增长对星级饭店规模的弹性系数分析——基于Panel-Data模型 被引量:2
15
作者 张丹 冯晓兵 《旅游研究》 2014年第3期78-83,共6页
文章选取2001~2010年全国31个省域的数据,基于panel-data模型,采用空间面板回归和聚类分析方法,研究中国省域星级饭店规模与旅游经济增长的关系。按照旅游经济增长对星级饭店规模的弹性系数,将全国分为四类地区。研究发现:各类区域星... 文章选取2001~2010年全国31个省域的数据,基于panel-data模型,采用空间面板回归和聚类分析方法,研究中国省域星级饭店规模与旅游经济增长的关系。按照旅游经济增长对星级饭店规模的弹性系数,将全国分为四类地区。研究发现:各类区域星级饭店对旅游经济的影响程度有很大差异,且存在一定的空间相关性。对于部分星级饭店规模已趋于饱和的省域,应注重星级酒店的市场营销,发展经济型酒店和家庭旅馆;而对于弹性系数较大的区域,则应加强发展星级酒店,扩大星级酒店的规模,提高接待水平。 展开更多
关键词 panel—data模型 星级饭店规模 旅游经济增长 弹性系数
下载PDF
Benchmark experiment on slab^(238)U with D-T neutrons for validation of evaluated nuclear data 被引量:1
16
作者 Yan-Yan Ding Yang-Bo Nie +9 位作者 Yue Zhang Zhi-Jie Hu Qi Zhao Huan-Yu Zhang Kuo-Zhi Xu Shi-Yu Zhang Xin-Yi Pan Chang-Lin Lan Jie Ren Xi-Chao Ruan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期145-159,共15页
A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°an... A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results. 展开更多
关键词 Leakage neutron spectra URANIUM D-T neutron source Evaluated nuclear data
下载PDF
An Imbalanced Data Classification Method Based on Hybrid Resampling and Fine Cost Sensitive Support Vector Machine 被引量:1
17
作者 Bo Zhu Xiaona Jing +1 位作者 Lan Qiu Runbo Li 《Computers, Materials & Continua》 SCIE EI 2024年第6期3977-3999,共23页
When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to ... When building a classification model,the scenario where the samples of one class are significantly more than those of the other class is called data imbalance.Data imbalance causes the trained classification model to be in favor of the majority class(usually defined as the negative class),which may do harm to the accuracy of the minority class(usually defined as the positive class),and then lead to poor overall performance of the model.A method called MSHR-FCSSVM for solving imbalanced data classification is proposed in this article,which is based on a new hybrid resampling approach(MSHR)and a new fine cost-sensitive support vector machine(CS-SVM)classifier(FCSSVM).The MSHR measures the separability of each negative sample through its Silhouette value calculated by Mahalanobis distance between samples,based on which,the so-called pseudo-negative samples are screened out to generate new positive samples(over-sampling step)through linear interpolation and are deleted finally(under-sampling step).This approach replaces pseudo-negative samples with generated new positive samples one by one to clear up the inter-class overlap on the borderline,without changing the overall scale of the dataset.The FCSSVM is an improved version of the traditional CS-SVM.It considers influences of both the imbalance of sample number and the class distribution on classification simultaneously,and through finely tuning the class cost weights by using the efficient optimization algorithm based on the physical phenomenon of rime-ice(RIME)algorithm with cross-validation accuracy as the fitness function to accurately adjust the classification borderline.To verify the effectiveness of the proposed method,a series of experiments are carried out based on 20 imbalanced datasets including both mildly and extremely imbalanced datasets.The experimental results show that the MSHR-FCSSVM method performs better than the methods for comparison in most cases,and both the MSHR and the FCSSVM played significant roles. 展开更多
关键词 Imbalanced data classification Silhouette value Mahalanobis distance RIME algorithm CS-SVM
下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data 被引量:2
18
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
下载PDF
ST-Map:an Interactive Map for Discovering Spatial and Temporal Patterns in Bibliographic Data 被引量:1
19
作者 ZUO Chenyu XU Yifan +1 位作者 DING Lingfang MENG Liqiu 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期3-15,共13页
Getting insight into the spatiotemporal distribution patterns of knowledge innovation is receiving increasing attention from policymakers and economic research organizations.Many studies use bibliometric data to analy... Getting insight into the spatiotemporal distribution patterns of knowledge innovation is receiving increasing attention from policymakers and economic research organizations.Many studies use bibliometric data to analyze the popularity of certain research topics,well-adopted methodologies,influential authors,and the interrelationships among research disciplines.However,the visual exploration of the patterns of research topics with an emphasis on their spatial and temporal distribution remains challenging.This study combined a Space-Time Cube(STC)and a 3D glyph to represent the complex multivariate bibliographic data.We further implemented a visual design by developing an interactive interface.The effectiveness,understandability,and engagement of ST-Map are evaluated by seven experts in geovisualization.The results suggest that it is promising to use three-dimensional visualization to show the overview and on-demand details on a single screen. 展开更多
关键词 space-time cube bibliographic data spatiotemporal analysis user study interactive map
下载PDF
A Blind Batch Encryption and Public Ledger-Based Protocol for Sharing Sensitive Data 被引量:1
20
作者 Zhiwei Wang Nianhua Yang +2 位作者 Qingqing Chen Wei Shen Zhiying Zhang 《China Communications》 SCIE CSCD 2024年第1期310-322,共13页
For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and all... For the goals of security and privacy preservation,we propose a blind batch encryption-and public ledger-based data sharing protocol that allows the integrity of sensitive data to be audited by a public ledger and allows privacy information to be preserved.Data owners can tightly manage their data with efficient revocation and only grant one-time adaptive access for the fulfillment of the requester.We prove that our protocol is semanticallly secure,blind,and secure against oblivious requesters and malicious file keepers.We also provide security analysis in the context of four typical attacks. 展开更多
关键词 blind batch encryption data sharing onetime adaptive access public ledger security and privacy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部