[Objectives]The paper was to investigate the development of Panonychus citri resistance to commonly used pesticides in major citrus producing areas in China,and to screen out new green and efficient agents for its con...[Objectives]The paper was to investigate the development of Panonychus citri resistance to commonly used pesticides in major citrus producing areas in China,and to screen out new green and efficient agents for its control and prevention.[Methods]The resistance changes of field populations of P.citri to abamectin,pyridaben,and bifenazate in 12 locations across five provinces in China were compared using the leaf disc impregnation method.[Results]P.citri in the tested areas exhibited the most severe resistance to abamectin,with approximately 91.7%of the field populations showing high levels of resistance to abamectin(112.1-560.5 times);50%of P.citri populations exhibited high levels of resistance to pyridaben(123.0-202.7 times),while the remaining populations showed intermediate levels of resistance(25.6-80.3 times);except for the Zhejiang Xiangshan 2019 and Jiangxi Yudu 2019 populations,which exhibited a medium level of resistance to bifenazate,the remaining 10 monitored populations demonstrated a high level of resistance to bifenazate(140.4-686.1 times).[Conclusions]It is advisable to discontinue the use of abamectin and bifenazate due to significant resistance observed in populations of P.citri monitored in 12 locations across 5 provinces.It is recommended to reduce the frequency of pyridaben use and alternate with other acaricides that have different mechanisms of action due to the varying degrees of resistance developed.展开更多
In order to further promote the prevention and control research of Panonychus citri and improve its control effect,this paper summarizes the main influencing factors of the outbreak,main control technology and drug re...In order to further promote the prevention and control research of Panonychus citri and improve its control effect,this paper summarizes the main influencing factors of the outbreak,main control technology and drug resistance of P.citri,and puts forward the research focus and control strategy.展开更多
Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Hunting...Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.展开更多
[Objectives]To investigate the mechanisms and pharmacologic effects of Citri Reticulatae Pericarpium against keloids by network pharmacology systematically.[Methods]TCMSP,Uniprot and BATMAN-TCM databases were used to ...[Objectives]To investigate the mechanisms and pharmacologic effects of Citri Reticulatae Pericarpium against keloids by network pharmacology systematically.[Methods]TCMSP,Uniprot and BATMAN-TCM databases were used to obtain the active constituents and targets of Citri Reticulatae Pericarpium."Keloid"was used as key word to search for related therapeutic targets from Drug Bank,OMIM,TTD,and GEO databases.The Chinese medicine compound-target network was constructed by Cytoscape software.Besides,gene ontology(GO)and Kyoto Encyclopedia of genes and genome enrichment analysis were also performed.Afterward,Discovery Studio software was used to assess the interaction of key components and genes.[Results]Five active components of Citri Reticulatae Pericarpium,773 compound targets and 676 keloid treatment targets were obtained in the databases.After the intersection,there are 47 targets of Citri Reticulatae Pericarpium for treating keloids.Hub genes were identified such as MMP9,IL6,TNF,TP53,and VEGFA,which were enriched in tumor necrosis factor-α,nuclear factor kappa-B,and other signaling pathways.The molecular docking stimulation confirmed the interaction between the MMP9 and three components of Citri Reticulatae Pericarpium.[Conclusions]Citri Reticulatae Pericarpium may play an important role in treating keloids through modulating genes and signaling pathways.The present study sheds light on the mechanisms of active compounds of Citri Reticulatae Pericarpium for the treatment of keloids.展开更多
Acaricidal activity of Boenninghausenia sessilicarpa against Panonychus cirri was tested in the laboratory. Four solvents were used to prepare crude extracts, petroleum ether, chloroform, ethyl acetate, and ethanol, a...Acaricidal activity of Boenninghausenia sessilicarpa against Panonychus cirri was tested in the laboratory. Four solvents were used to prepare crude extracts, petroleum ether, chloroform, ethyl acetate, and ethanol, among which ethanol was the most effective one. The results suggested that ethanol extracts of B. sessilicarpa had eminent acaricidal and ovicidal activities. Concentrated extracts were prepared using petroleum ether, chloroform, ethyl acetate, or distilled water as solvent. Mite mortality rates in the concentrated extracts by petroleum ether, chloroform, or distilled water were significantly lower than those by ethyl acetate. The LC50 values of eggs and female mites were 0.7639 and 1.1033 mg mL^-1, respectively. After liquid chromatography and thin layer chromatography, the concentrated extracts were separated into 14 groups of fractions and further tests for their acaricidal and ovicidal activities were conducted. Fraction 2 was found to possess higher acaricidal and ovicidal activities. The mortality of eggs and adult mites were 85.83 and 63.07%, respectively. Moreover, fraction 2 showed moderate oviposition inhibition effect (0.8795) against P. citri when the used dose was higher than 2.5 mg mL^-1展开更多
Six species of wild rice with different ecophenotypes including Oryza grandiglumis (E6-1, E6-3 / 6-4), O. minuta (E13-9, E13-13), O. officinalis(E15-8, E15-13), O. punctata (E16-1, E16-3, E16-13), O. granulata...Six species of wild rice with different ecophenotypes including Oryza grandiglumis (E6-1, E6-3 / 6-4), O. minuta (E13-9, E13-13), O. officinalis(E15-8, E15-13), O. punctata (E16-1, E16-3, E16-13), O. granulata(E7-4), and O. latifolia(101392, E9-1, E9-10) were extracted with methnol and the repellent activity of the extracts against the two insects Aphis citricola and Panonychus citri were studied. The extracts of O. officinalis E15-8 showed higher repellent rate to the two insects than those of the other species. The repellent rates of the extracts of E15-8 to P. citriand A. citricola were 83.26% and 87.86% at 5×10^4 μg/mL in 24 h and 87.95% and 82.43% in 48 h, respectively. The extracts of O. officinalis E15-8 had the effect of inhibition to the esterase of the two insects.展开更多
In this paper, the numeral response and main parameters of experimental population life table were analyzed for determining the suppressing ability of Amblyseius cucumeris on Panonychus citri. The result showed that: ...In this paper, the numeral response and main parameters of experimental population life table were analyzed for determining the suppressing ability of Amblyseius cucumeris on Panonychus citri. The result showed that: (1) Under 21-31°C and 1 - 9 prey densities/leaf fragment condition, the prey consumptions of A. cucumeris increased with the temperature or prey density; (2) In 1:3 predator-prey ratio treatment, the suppression of P. citri (Ro=34.0053; T=19.4369; t=3.8204) was rather weak, it was enhanced as the ratio over 5:30, and the populations of P. citri in these treatments can be fully controlled within 4-5 days; (3) Under 25±1°C, 80-85% RH and 15L: 9D illumination conditions, the net reproductive rate, mean generation duration and the time for population double increase of P. citri (Ro=34.0053; T=19.4369; t=3.8204) were higher than those of A. cucumeris (Ro=21.8750; T=16.8943; t=3.7954). While the intrinsic rate of increase and finite rate of increase of the former (rm=0.1814; λ=1.1989) were lower than those of the latter (rm=0.1826; λ=1.2004). These results indicated that A. cucumeris is a desirable bio-control agent to suppress P. citri at lower population stage in citrus orchard.展开更多
Huanglongbing(HLB) is a devastating disease that has led to an acute crisis for growers of citrus, one of the world's most important fruit crops. The phloem-feeding Asian citrus psyllid(ACP), Diaphorina citri, is ...Huanglongbing(HLB) is a devastating disease that has led to an acute crisis for growers of citrus, one of the world's most important fruit crops. The phloem-feeding Asian citrus psyllid(ACP), Diaphorina citri, is the main pest at the new shoot stage and is the only natural vector of HLB pathogenic bacteria. Little is known about how plants perceive and defend themselves from this destructive pest. Here, we characterized changes in the expression of various genes in citrus plants that were continuously infested by D. citri for different durations(12, 24, and 48 h). A total of 5 219 differentially expressed genes(DEGs) and 643 common DEGs were identified across all time points. Several pathways related to defense were activated, such as peroxisome, alpha-linolenic acid metabolism, and phenylpropanoid and terpenoid biosynthesis, and some pathways related to growth and signal transduction were suppressed in response to D. citri infestation. The expression of genes including kinases(CML44, CIPK6, and XTH6), phytohormones(SAMT, LOX6, and NPR3), transcription factors(bHLH162, WRKY70, and WRKY40), and secondary metabolite synthesis-related genes(PAL, 4CL2, UGT74B1 and CYP82G1) was significantly altered in response to D. citri infestation. The findings of this study greatly enhance our understanding of the mechanisms underlying the defense response of citrus plants to D. citri infestation at the molecular level. Functional characterization of the candidate defense-related genes identified in this study will aid the molecular breeding of insect-resistant citrus varieties.展开更多
In order to promote the healthy and sustainable development of citrus industry in Guangxi and reduce the harm of Diaphorina citri and citrus Huanglongbing on citrus industry,the paper summarizes the occurrence of D.ci...In order to promote the healthy and sustainable development of citrus industry in Guangxi and reduce the harm of Diaphorina citri and citrus Huanglongbing on citrus industry,the paper summarizes the occurrence of D.citri in Guangxi,and put forward comprehensive control technique,so as to provide the reference for guiding prevention and control of major pests in citrus industry.展开更多
基金Guangxi Agricultural Science and Technology Self-financing Project(Z2022128)Fund Project of Guangxi Citrus Breeding and Cultivation Engineering Technology Research Center(2022A003).
文摘[Objectives]The paper was to investigate the development of Panonychus citri resistance to commonly used pesticides in major citrus producing areas in China,and to screen out new green and efficient agents for its control and prevention.[Methods]The resistance changes of field populations of P.citri to abamectin,pyridaben,and bifenazate in 12 locations across five provinces in China were compared using the leaf disc impregnation method.[Results]P.citri in the tested areas exhibited the most severe resistance to abamectin,with approximately 91.7%of the field populations showing high levels of resistance to abamectin(112.1-560.5 times);50%of P.citri populations exhibited high levels of resistance to pyridaben(123.0-202.7 times),while the remaining populations showed intermediate levels of resistance(25.6-80.3 times);except for the Zhejiang Xiangshan 2019 and Jiangxi Yudu 2019 populations,which exhibited a medium level of resistance to bifenazate,the remaining 10 monitored populations demonstrated a high level of resistance to bifenazate(140.4-686.1 times).[Conclusions]It is advisable to discontinue the use of abamectin and bifenazate due to significant resistance observed in populations of P.citri monitored in 12 locations across 5 provinces.It is recommended to reduce the frequency of pyridaben use and alternate with other acaricides that have different mechanisms of action due to the varying degrees of resistance developed.
基金Supported by Guangxi Agricultural Science and Technology Self-financing Project(Z2022128)Fund Project of Guangxi Citrus Breeding and Cultivation Engineering Technology Research Center(2023A001).
文摘In order to further promote the prevention and control research of Panonychus citri and improve its control effect,this paper summarizes the main influencing factors of the outbreak,main control technology and drug resistance of P.citri,and puts forward the research focus and control strategy.
基金supported by FDCT grants from the Macao Science and Technology Development Fund,China,No.002/2023/ALC(to BYKL)Foshan Medicine Dengfeng Project of China 2019-2021(to BYKL)+3 种基金the Science and Technology Program of Sichuan Province,Nos.2022YFS0620(to DQ)and MZGC20230041(to XFW)the TCMs Commission of Sichuan Province,No.2021MS469(to YT)the Science and Technology Program of Luzhou,No.2022-WGR-194(to YT)the Southwest Medical University Science and Technology Program,No.2021NJXNYD04(to DQ).
文摘Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.
基金Supported by Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(2021ZYD0057).
文摘[Objectives]To investigate the mechanisms and pharmacologic effects of Citri Reticulatae Pericarpium against keloids by network pharmacology systematically.[Methods]TCMSP,Uniprot and BATMAN-TCM databases were used to obtain the active constituents and targets of Citri Reticulatae Pericarpium."Keloid"was used as key word to search for related therapeutic targets from Drug Bank,OMIM,TTD,and GEO databases.The Chinese medicine compound-target network was constructed by Cytoscape software.Besides,gene ontology(GO)and Kyoto Encyclopedia of genes and genome enrichment analysis were also performed.Afterward,Discovery Studio software was used to assess the interaction of key components and genes.[Results]Five active components of Citri Reticulatae Pericarpium,773 compound targets and 676 keloid treatment targets were obtained in the databases.After the intersection,there are 47 targets of Citri Reticulatae Pericarpium for treating keloids.Hub genes were identified such as MMP9,IL6,TNF,TP53,and VEGFA,which were enriched in tumor necrosis factor-α,nuclear factor kappa-B,and other signaling pathways.The molecular docking stimulation confirmed the interaction between the MMP9 and three components of Citri Reticulatae Pericarpium.[Conclusions]Citri Reticulatae Pericarpium may play an important role in treating keloids through modulating genes and signaling pathways.The present study sheds light on the mechanisms of active compounds of Citri Reticulatae Pericarpium for the treatment of keloids.
基金supported by the Special Public Sector Research of China (nyhyzx07-057)the National Key Technology R&D Program of China(2007BAD47B04, 2008BAD92B08)
文摘Acaricidal activity of Boenninghausenia sessilicarpa against Panonychus cirri was tested in the laboratory. Four solvents were used to prepare crude extracts, petroleum ether, chloroform, ethyl acetate, and ethanol, among which ethanol was the most effective one. The results suggested that ethanol extracts of B. sessilicarpa had eminent acaricidal and ovicidal activities. Concentrated extracts were prepared using petroleum ether, chloroform, ethyl acetate, or distilled water as solvent. Mite mortality rates in the concentrated extracts by petroleum ether, chloroform, or distilled water were significantly lower than those by ethyl acetate. The LC50 values of eggs and female mites were 0.7639 and 1.1033 mg mL^-1, respectively. After liquid chromatography and thin layer chromatography, the concentrated extracts were separated into 14 groups of fractions and further tests for their acaricidal and ovicidal activities were conducted. Fraction 2 was found to possess higher acaricidal and ovicidal activities. The mortality of eggs and adult mites were 85.83 and 63.07%, respectively. Moreover, fraction 2 showed moderate oviposition inhibition effect (0.8795) against P. citri when the used dose was higher than 2.5 mg mL^-1
基金the National Natural Science Foundation of China (No. 30170097).
文摘Six species of wild rice with different ecophenotypes including Oryza grandiglumis (E6-1, E6-3 / 6-4), O. minuta (E13-9, E13-13), O. officinalis(E15-8, E15-13), O. punctata (E16-1, E16-3, E16-13), O. granulata(E7-4), and O. latifolia(101392, E9-1, E9-10) were extracted with methnol and the repellent activity of the extracts against the two insects Aphis citricola and Panonychus citri were studied. The extracts of O. officinalis E15-8 showed higher repellent rate to the two insects than those of the other species. The repellent rates of the extracts of E15-8 to P. citriand A. citricola were 83.26% and 87.86% at 5×10^4 μg/mL in 24 h and 87.95% and 82.43% in 48 h, respectively. The extracts of O. officinalis E15-8 had the effect of inhibition to the esterase of the two insects.
文摘In this paper, the numeral response and main parameters of experimental population life table were analyzed for determining the suppressing ability of Amblyseius cucumeris on Panonychus citri. The result showed that: (1) Under 21-31°C and 1 - 9 prey densities/leaf fragment condition, the prey consumptions of A. cucumeris increased with the temperature or prey density; (2) In 1:3 predator-prey ratio treatment, the suppression of P. citri (Ro=34.0053; T=19.4369; t=3.8204) was rather weak, it was enhanced as the ratio over 5:30, and the populations of P. citri in these treatments can be fully controlled within 4-5 days; (3) Under 25±1°C, 80-85% RH and 15L: 9D illumination conditions, the net reproductive rate, mean generation duration and the time for population double increase of P. citri (Ro=34.0053; T=19.4369; t=3.8204) were higher than those of A. cucumeris (Ro=21.8750; T=16.8943; t=3.7954). While the intrinsic rate of increase and finite rate of increase of the former (rm=0.1814; λ=1.1989) were lower than those of the latter (rm=0.1826; λ=1.2004). These results indicated that A. cucumeris is a desirable bio-control agent to suppress P. citri at lower population stage in citrus orchard.
基金supported by Key Realm R&D Program of Guangdong Province (Grant No. 2020B0202090005)Special Fund for Scientific Innovation Strategy-construction of High Level Academy of Agriculture Science (Grant No. R2020PY-JG002)the President Foundation of Guangdong Academy of Agricultural Sciences (Grant No. 202030)。
文摘Huanglongbing(HLB) is a devastating disease that has led to an acute crisis for growers of citrus, one of the world's most important fruit crops. The phloem-feeding Asian citrus psyllid(ACP), Diaphorina citri, is the main pest at the new shoot stage and is the only natural vector of HLB pathogenic bacteria. Little is known about how plants perceive and defend themselves from this destructive pest. Here, we characterized changes in the expression of various genes in citrus plants that were continuously infested by D. citri for different durations(12, 24, and 48 h). A total of 5 219 differentially expressed genes(DEGs) and 643 common DEGs were identified across all time points. Several pathways related to defense were activated, such as peroxisome, alpha-linolenic acid metabolism, and phenylpropanoid and terpenoid biosynthesis, and some pathways related to growth and signal transduction were suppressed in response to D. citri infestation. The expression of genes including kinases(CML44, CIPK6, and XTH6), phytohormones(SAMT, LOX6, and NPR3), transcription factors(bHLH162, WRKY70, and WRKY40), and secondary metabolite synthesis-related genes(PAL, 4CL2, UGT74B1 and CYP82G1) was significantly altered in response to D. citri infestation. The findings of this study greatly enhance our understanding of the mechanisms underlying the defense response of citrus plants to D. citri infestation at the molecular level. Functional characterization of the candidate defense-related genes identified in this study will aid the molecular breeding of insect-resistant citrus varieties.
基金Supported by Science and Technology Major Project of Guangxi Province(GK AA20108003,GK AA22036002)Science and Technology Major Project of Nanning City(20212141)+6 种基金Collaborative Innovation Project of Chinese Academy of Agricultural Sciences-Guangxi Academy of Agricultural Sciences(CAAS-GXAAS-XTCX2019026-2)Guangxi Special Crops Experimental Station(G TS202201)Wuming District Science and Technology Project of Nanning City(2210201)Jiangnan District Science and Technology Project of Nanning City(2020020102)GNK(2021YT051,2022JM32)Guangxi Citrus Huanglongbing Prevention and Control Engineering Technology Research Center"Cultivation and Pest Control"Post Expert of Guangxi Citrus Innovation Team(nycytxgxcxtd-2021-05-02)。
文摘In order to promote the healthy and sustainable development of citrus industry in Guangxi and reduce the harm of Diaphorina citri and citrus Huanglongbing on citrus industry,the paper summarizes the occurrence of D.citri in Guangxi,and put forward comprehensive control technique,so as to provide the reference for guiding prevention and control of major pests in citrus industry.