Magang,situated in MaanshanPrefecture,near the lower reaches of theYangtze River and in eastern Anhui Province,is one of China’s super-large integrated ironand steel enterprises,and also Anhui’s largestindustrial en...Magang,situated in MaanshanPrefecture,near the lower reaches of theYangtze River and in eastern Anhui Province,is one of China’s super-large integrated ironand steel enterprises,and also Anhui’s largestindustrial enterprise.According to its netassets,it ranks the 16th of the country,and27th by its sales amount. Magang was formally established in1958.In 1992,it was approved as one ofChina’s first nine stock system normalizedexperiment enterprises,and now has becomeChina’s listing company with largest scaleand amount of capital issued inside andoutside China.Stock system makes it展开更多
China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiven...China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiveness well. The effects of environmental regulation on industrial competitiveness are largely subject to the institutional design of environmental regulation. Despite numerous studies on the relationship between environmental regulation and industrial competitiveness, a consensus has yet to be reached. Aside from differences in research methodology, these studies failed to give sufficient consideration to the impact of environmental regulation on industrial competitiveness. Such effects can be negative or positive depending on the design of environmental regulatory policy. This paper has investigated the relationship between environmental regulation and the competitiveness of China's iron and steel industry and discovered that tighter environmental regulation does not diminish the competitiveness of the iron and steel industry since the policy design of environmental regulation accommodates the tolerance of advanced production capacity and includes a reasonable cost sharing mechanism. This discovery is of important reference for China to develop rational policy design to balance the relationship between environmental regulation and industrial competitiveness.展开更多
This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount...This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.展开更多
Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared t...Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.展开更多
How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces fo...How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces four main factors affecting the normal operation of equipment,analyzes five main problems existing in the operation and management of electrical equipment,and puts forward corresponding improvement measures,so as to improve the management level of electrical equipment in iron and steel enterprises.展开更多
The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that m...The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1) of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.展开更多
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o...In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.展开更多
In this study, high chromium white iron (HC-Wi) alloy and the Hadfield steel were studied. The microstructure of this high-chromium iron was studied using Metallurgical optical microscopy (OM) and compared to the Hadf...In this study, high chromium white iron (HC-Wi) alloy and the Hadfield steel were studied. The microstructure of this high-chromium iron was studied using Metallurgical optical microscopy (OM) and compared to the Hadfield steel. The hardness and unnotched charpy impact strength of the HC-Wi alloy and Hadfield steel were examined at ambient temperature in the as-cast and heat-treated conditions. A pin-on-disc test at linear speed of 1.18 m/s and a 10 N normal load was employed to evaluate the wear behavior of both steel samples. Microstructural results showed that varying the carbon level in HC-Wi alloys can affect the chromium carbide morphology and its distribution in the austenite matrix which leads to considerable changes of the mechanical properties. Abrasion test showed that HC-Wi alloys have superior wear resistance, about three times of the Hadfield steel.展开更多
The use of econometric methods to analyze the relationship between our country steel price index and the international iron ore freight rate,time series stationarity test,cointegration test,Granger test of causality a...The use of econometric methods to analyze the relationship between our country steel price index and the international iron ore freight rate,time series stationarity test,cointegration test,Granger test of causality and model parameter estimation tools use,find that there is Granger causality between our country steel price index and the international iron ore freight rate,China' s steel price fluctuations to some extent affect the international iron ore freight.展开更多
Corrosion behaviour of cast iron and low alloy steel in cocoa liquor and well water was investigated. The average weight losses of the specimens were measured using digital weighing balance. The results showed that th...Corrosion behaviour of cast iron and low alloy steel in cocoa liquor and well water was investigated. The average weight losses of the specimens were measured using digital weighing balance. The results showed that the weight losses of both cast iron and low alloy steel in both media increases with time. Corrosion rate of cast iron in cocoa liquor increases rapidly with time for up to 336 hours (1000 μm/yr), but in well water the rapid rate of corrosion only lasted up to 187 hours (1160 μm/yr) thereafter it continuously dropping until 264 hours (667 μm/yr) after which it remains constant. Low alloy steel corroded faster in cocoa liquor up to 264 hours (200 μm/yr), whereas the initial rapid corrosion rate only lasted up to 168 hours (180 μm/yr) in well water environment. The results revealed that low alloy steel exhibited better corrosion resistance in both media, with cocoa liquor been more aggressive. Thus, low alloy steel will be a better material for piping and pumping system in cocoa processing industries.展开更多
The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general mode...The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general model: α = 1.2769? indicates that HAZ hardness of aluminium weldment is dependant on the ratio of product to sum of HAZ hardness of mild steel and cast iron weldments cooled in palm oil under the same conditions. The maximum deviations of the model-predicted HAZ hardness values α, μ and β from the corresponding experimental values αexp, μexp and βexp were less than 0.04% indicating the reliability and validity of the model.展开更多
An experimental study on the thermal properties of iron filings and steel-fiber-reinforced concrete for solar/thermal energy storage application is presented in this report. It takes into account the results of measur...An experimental study on the thermal properties of iron filings and steel-fiber-reinforced concrete for solar/thermal energy storage application is presented in this report. It takes into account the results of measurements of thermal conductivity, thermal resistivity, thermal diffusivity and the results of compressive strength, density as well as energy storage capacity calculated from the knowledge of the above measured parameters. The experimental testing method is described as well: based upon the linear heat source theory, it requires the use of a special probe to be inserted into the sample. The experimentation was forwarded to test concrete aggregate mixtures with three different sizes and same quantity of steel fibers;two different quantities of iron filings and one plain concrete. The measurements were carried out from the pouring time of cubic samples and were ended up when hardened conditions were achieved. The results indicate that the steel fibers and iron filings have influence on the thermal and mechanical properties of the concretes tested, thus the iron filings and steel fibers reinforced concrete is suitable for better solar/thermal energy storage due to an increase in storage capacity over plain concrete.展开更多
The Baotou Iron and Steel Company(BISCO) is located at Baotou,830 kilometerswest of Beijing,in the Inner MongoliaAutonomous Region.The ore deposit atBaiyun’ebo,on which the company is based,was discovered by geologis...The Baotou Iron and Steel Company(BISCO) is located at Baotou,830 kilometerswest of Beijing,in the Inner MongoliaAutonomous Region.The ore deposit atBaiyun’ebo,on which the company is based,was discovered by geologist DING Daohengin 1927 and was later found to be rich inrare earth elements.An extensive prospecting campaignwas launched after the founding of the展开更多
A new type of corrosion inhibitor and fog suppressor composed of Nitrogen-containing alkaloid,water-soluble butadiene lower polymer, and inorganic electrolyte has been investigated by gravimetric and electrochemical m...A new type of corrosion inhibitor and fog suppressor composed of Nitrogen-containing alkaloid,water-soluble butadiene lower polymer, and inorganic electrolyte has been investigated by gravimetric and electrochemical method. Effects or this chemicals on pickling rate and hydrogen penetration into iron and steel material in 50~150 g/L HCI or/and H2SO4 solutions at 20~70℃ temperature were examined. The amount of acid fog escaping from the surface of air-liquid was determined by chemical titration. The results indicate that the efficiency of inhibition and suppression depends on film properties by which mean a barrier film on the interface of bare mild steel/solution or an unsolvable liquid membrane as hydrophibic effect.In present work the film-forming mechanism by in situ and chemistry-mechanics effect is also discussed.展开更多
The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbid...The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbide-carbon bricks for the ladle bottom,those for the ladle wall have more pyrophyllite and the Al2O3 content of 36.32 mass%;their bulk density,apparent porosity and cold compressive strength are lower than the requirement of industry standard;they have poor anti-oxidation performance and are oxidized to form a porous layer during service,which loosens the brick lining structure thus leading to fracture,local wear and structural damage of bricks;(2)without preheating,steel scraps are not completely melted,resulting in slag or steel attachment at the mouth or the bottom of ladles thus increasing damage of ladles;(3)and the residual bricks react with the attached slag to form low melting point phases affecting their hot properties.The refractories for the lining of hot iron ladles must be improved in combination with process changes,not entirely by raw materials replacement to reduce costs.展开更多
The Baotou iron-Steel and Rare Earth Co. is located in Baotou of the AutonomousRegion of Inner Mongolia, where China has her largest mineral reserves of rare earths, par-ticularly that at Baiyunebo. The rare earth res...The Baotou iron-Steel and Rare Earth Co. is located in Baotou of the AutonomousRegion of Inner Mongolia, where China has her largest mineral reserves of rare earths, par-ticularly that at Baiyunebo. The rare earth reserves in this region amount to as high as 80%of that of the whole Nation. The No. 3 Rare Earth Factory was established in 196l and itwas then a pilot plant of the Baotou Steel Works. In 1970 it was reconstructed as a formalplant. Now, it becomes one of the biggest rare earth production bases in China.展开更多
文摘Magang,situated in MaanshanPrefecture,near the lower reaches of theYangtze River and in eastern Anhui Province,is one of China’s super-large integrated ironand steel enterprises,and also Anhui’s largestindustrial enterprise.According to its netassets,it ranks the 16th of the country,and27th by its sales amount. Magang was formally established in1958.In 1992,it was approved as one ofChina’s first nine stock system normalizedexperiment enterprises,and now has becomeChina’s listing company with largest scaleand amount of capital issued inside andoutside China.Stock system makes it
文摘China's economic growth is heavily influenced by exports, while reconciling environmental regulation and economic growth requires handling the relationship between environmental regulation and industrial competitiveness well. The effects of environmental regulation on industrial competitiveness are largely subject to the institutional design of environmental regulation. Despite numerous studies on the relationship between environmental regulation and industrial competitiveness, a consensus has yet to be reached. Aside from differences in research methodology, these studies failed to give sufficient consideration to the impact of environmental regulation on industrial competitiveness. Such effects can be negative or positive depending on the design of environmental regulatory policy. This paper has investigated the relationship between environmental regulation and the competitiveness of China's iron and steel industry and discovered that tighter environmental regulation does not diminish the competitiveness of the iron and steel industry since the policy design of environmental regulation accommodates the tolerance of advanced production capacity and includes a reasonable cost sharing mechanism. This discovery is of important reference for China to develop rational policy design to balance the relationship between environmental regulation and industrial competitiveness.
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAF10B05)
文摘This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
基金support by the project entitled"Interdisciplinarity in Materials Science and Joining Technologies"from the Department of Production Engineering,Faculty of Technical Sciences Novi Sad,Serbia。
文摘Intermetallic aluminide compounds possess several potential advantages compared to alloyed steels,like enhanced oxidation resistance,lower density and the omittance of critical raw materials.Iron aluminides,compared to other transition metal-aluminides of TM_(3)-Al type,although having a higher density compared to titan-aluminides,have a lower density compared to nickel-aluminides,but also a higher ductility than both alternatives,making this material potentially effective in ballistic protection application.Density-wise,this material may be a worthy alternative to armour steels,which was the aim of this study.Two materials,Fe_(3)Al intermetallic compound(F3A-C)and Armox 500 armour steel were ballistically tested against tungsten-carbide(WC)armour-piercing ammunition,in accordance with STANAG 4569.After ballistic testing,microhardness and metallographic testing were performed,revealing differences in strain hardening,crack propagation mode and exit hole morphology.F3A-C ballistic resistance is similar to that of armour steel,in spite of the lower tensile and impact mechanical properties,relying on a considerably higher strain hardening rate,thermal properties and a lower density.
文摘How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces four main factors affecting the normal operation of equipment,analyzes five main problems existing in the operation and management of electrical equipment,and puts forward corresponding improvement measures,so as to improve the management level of electrical equipment in iron and steel enterprises.
基金Project supported by the National Natural Science Foundation of China (No. 30270800).
文摘The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1) of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.
基金financially supported by the National Natural Science Foundation of China (No. 51575132)
文摘In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
文摘In this study, high chromium white iron (HC-Wi) alloy and the Hadfield steel were studied. The microstructure of this high-chromium iron was studied using Metallurgical optical microscopy (OM) and compared to the Hadfield steel. The hardness and unnotched charpy impact strength of the HC-Wi alloy and Hadfield steel were examined at ambient temperature in the as-cast and heat-treated conditions. A pin-on-disc test at linear speed of 1.18 m/s and a 10 N normal load was employed to evaluate the wear behavior of both steel samples. Microstructural results showed that varying the carbon level in HC-Wi alloys can affect the chromium carbide morphology and its distribution in the austenite matrix which leads to considerable changes of the mechanical properties. Abrasion test showed that HC-Wi alloys have superior wear resistance, about three times of the Hadfield steel.
文摘The use of econometric methods to analyze the relationship between our country steel price index and the international iron ore freight rate,time series stationarity test,cointegration test,Granger test of causality and model parameter estimation tools use,find that there is Granger causality between our country steel price index and the international iron ore freight rate,China' s steel price fluctuations to some extent affect the international iron ore freight.
文摘Corrosion behaviour of cast iron and low alloy steel in cocoa liquor and well water was investigated. The average weight losses of the specimens were measured using digital weighing balance. The results showed that the weight losses of both cast iron and low alloy steel in both media increases with time. Corrosion rate of cast iron in cocoa liquor increases rapidly with time for up to 336 hours (1000 μm/yr), but in well water the rapid rate of corrosion only lasted up to 187 hours (1160 μm/yr) thereafter it continuously dropping until 264 hours (667 μm/yr) after which it remains constant. Low alloy steel corroded faster in cocoa liquor up to 264 hours (200 μm/yr), whereas the initial rapid corrosion rate only lasted up to 168 hours (180 μm/yr) in well water environment. The results revealed that low alloy steel exhibited better corrosion resistance in both media, with cocoa liquor been more aggressive. Thus, low alloy steel will be a better material for piping and pumping system in cocoa processing industries.
文摘The predictability of hardness of the heat affected zone (HAZ) in aluminum weldments cooled in palm oil, based on hardness of similarly cooled mild steel and cast iron weldments has been ascertained. The general model: α = 1.2769? indicates that HAZ hardness of aluminium weldment is dependant on the ratio of product to sum of HAZ hardness of mild steel and cast iron weldments cooled in palm oil under the same conditions. The maximum deviations of the model-predicted HAZ hardness values α, μ and β from the corresponding experimental values αexp, μexp and βexp were less than 0.04% indicating the reliability and validity of the model.
文摘An experimental study on the thermal properties of iron filings and steel-fiber-reinforced concrete for solar/thermal energy storage application is presented in this report. It takes into account the results of measurements of thermal conductivity, thermal resistivity, thermal diffusivity and the results of compressive strength, density as well as energy storage capacity calculated from the knowledge of the above measured parameters. The experimental testing method is described as well: based upon the linear heat source theory, it requires the use of a special probe to be inserted into the sample. The experimentation was forwarded to test concrete aggregate mixtures with three different sizes and same quantity of steel fibers;two different quantities of iron filings and one plain concrete. The measurements were carried out from the pouring time of cubic samples and were ended up when hardened conditions were achieved. The results indicate that the steel fibers and iron filings have influence on the thermal and mechanical properties of the concretes tested, thus the iron filings and steel fibers reinforced concrete is suitable for better solar/thermal energy storage due to an increase in storage capacity over plain concrete.
文摘The Baotou Iron and Steel Company(BISCO) is located at Baotou,830 kilometerswest of Beijing,in the Inner MongoliaAutonomous Region.The ore deposit atBaiyun’ebo,on which the company is based,was discovered by geologist DING Daohengin 1927 and was later found to be rich inrare earth elements.An extensive prospecting campaignwas launched after the founding of the
文摘A new type of corrosion inhibitor and fog suppressor composed of Nitrogen-containing alkaloid,water-soluble butadiene lower polymer, and inorganic electrolyte has been investigated by gravimetric and electrochemical method. Effects or this chemicals on pickling rate and hydrogen penetration into iron and steel material in 50~150 g/L HCI or/and H2SO4 solutions at 20~70℃ temperature were examined. The amount of acid fog escaping from the surface of air-liquid was determined by chemical titration. The results indicate that the efficiency of inhibition and suppression depends on film properties by which mean a barrier film on the interface of bare mild steel/solution or an unsolvable liquid membrane as hydrophibic effect.In present work the film-forming mechanism by in situ and chemistry-mechanics effect is also discussed.
文摘The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbide-carbon bricks for the ladle bottom,those for the ladle wall have more pyrophyllite and the Al2O3 content of 36.32 mass%;their bulk density,apparent porosity and cold compressive strength are lower than the requirement of industry standard;they have poor anti-oxidation performance and are oxidized to form a porous layer during service,which loosens the brick lining structure thus leading to fracture,local wear and structural damage of bricks;(2)without preheating,steel scraps are not completely melted,resulting in slag or steel attachment at the mouth or the bottom of ladles thus increasing damage of ladles;(3)and the residual bricks react with the attached slag to form low melting point phases affecting their hot properties.The refractories for the lining of hot iron ladles must be improved in combination with process changes,not entirely by raw materials replacement to reduce costs.
文摘The Baotou iron-Steel and Rare Earth Co. is located in Baotou of the AutonomousRegion of Inner Mongolia, where China has her largest mineral reserves of rare earths, par-ticularly that at Baiyunebo. The rare earth reserves in this region amount to as high as 80%of that of the whole Nation. The No. 3 Rare Earth Factory was established in 196l and itwas then a pilot plant of the Baotou Steel Works. In 1970 it was reconstructed as a formalplant. Now, it becomes one of the biggest rare earth production bases in China.