The potyvirus Papaya ringspot virus (PRSV) is an important pathogen of papaya that causes severe losses in economic crops for papaya production globally. The coat protein (CP) genes of five PRSV isolates originati...The potyvirus Papaya ringspot virus (PRSV) is an important pathogen of papaya that causes severe losses in economic crops for papaya production globally. The coat protein (CP) genes of five PRSV isolates originating from different locations in China were cloned and sequenced. The CP-coding region varied in size from 864-873 nucleotides, encoding proteins of 288-291 amino acids. The five Chinese isolates of PRSV have been characterized as papaya-infecting (PRSV-P). The CP sequences of the Chinese isolates were compared with those of previously published PRSV isolates originating from different countries at amino acid levels. A number of KE repeat boxes in the N terminus of the PRSV-CP were found in all Chinese isolates. The phylogenetic branching pattern revealed that there was certain extended grouping between geographic locations, and the Asian type probably represents the oldest population of PRSV. The information of CP genes will be useful in designing and developing durable virus resistant-PRSV transgenic papaya in China. Meanwhile broad-spectrum-virus resistant, strongly resistant-PRSV and good safe papaya lines are required.展开更多
To understand the effect of rare codon on the silencing ratio of foreign gene, some preferred codon in potato virus X (PVX) coat protein gene (cp) were substituted with synonymous rare codons. The modified PVX coat pr...To understand the effect of rare codon on the silencing ratio of foreign gene, some preferred codon in potato virus X (PVX) coat protein gene (cp) were substituted with synonymous rare codons. The modified PVX coat protein gene (cpm) and wild-type cp gene (cpw) were inserted into binary vector under the control of CaMV35S promoter, and these two plant expression constructs were transferred into tobacco (Nicotiana tabacum cv. Xanthi) genomes via Agrobacterium mediated method and transgenic plants were generated. Northern blot analysis of RNA isolated from these plants showed that the silencing ratio of cpm gene in transgenic tobaccos was higher than that of cpw (35% and 6.25% respectively). Run on results indicate that the silencing of cp gene happened at post-transcriptional level. The resistance of transgenic tobaccos carrying cpm genes to PVX is increased compared with that of transformants carrying cpw genes. These results suggest that the resistance of transgenic tobacco to PVX can be enhanced by codon replacement.展开更多
The plant expression vector of the coat protein(CP) gene of cucumber mosaic virus (CMV) BS strain was used to transform three kinds of pepper (Capsicum annuum) tissues (cotyledon, stem and root) by agrobacterium-m...The plant expression vector of the coat protein(CP) gene of cucumber mosaic virus (CMV) BS strain was used to transform three kinds of pepper (Capsicum annuum) tissues (cotyledon, stem and root) by agrobacterium-mediated co-cultivation. 53%-68.4% of the total tissues (639) can be induced to be calli, but only cotyledon calli can be further regenerated to form shoots (regenerated efficiency 39.7%). 70%(42/60) of the putative transformed plants were confirmed to have CP gene in their genomes by Southern blot. The mRNAs and the CP were respectively found in 80% of transgenic plants by Northern blot and DAS-ELISA. 24 of the transgenic plants expressing CP gene of BS strain showed three kinds of resistant level (severe symptom, delay of symptomatic development, no symptom) to infection of CMV-BS and of CMV-P. However, there was distinctly higher resistance to inoculation of CMV-BS than that with CMV-P in these transgenic plants.展开更多
文摘The potyvirus Papaya ringspot virus (PRSV) is an important pathogen of papaya that causes severe losses in economic crops for papaya production globally. The coat protein (CP) genes of five PRSV isolates originating from different locations in China were cloned and sequenced. The CP-coding region varied in size from 864-873 nucleotides, encoding proteins of 288-291 amino acids. The five Chinese isolates of PRSV have been characterized as papaya-infecting (PRSV-P). The CP sequences of the Chinese isolates were compared with those of previously published PRSV isolates originating from different countries at amino acid levels. A number of KE repeat boxes in the N terminus of the PRSV-CP were found in all Chinese isolates. The phylogenetic branching pattern revealed that there was certain extended grouping between geographic locations, and the Asian type probably represents the oldest population of PRSV. The information of CP genes will be useful in designing and developing durable virus resistant-PRSV transgenic papaya in China. Meanwhile broad-spectrum-virus resistant, strongly resistant-PRSV and good safe papaya lines are required.
基金supported by the National Key Basic Research Project(Grant No.G2000016205)the National Natura1 Science Foundation of China(Grant No.39989001)
文摘To understand the effect of rare codon on the silencing ratio of foreign gene, some preferred codon in potato virus X (PVX) coat protein gene (cp) were substituted with synonymous rare codons. The modified PVX coat protein gene (cpm) and wild-type cp gene (cpw) were inserted into binary vector under the control of CaMV35S promoter, and these two plant expression constructs were transferred into tobacco (Nicotiana tabacum cv. Xanthi) genomes via Agrobacterium mediated method and transgenic plants were generated. Northern blot analysis of RNA isolated from these plants showed that the silencing ratio of cpm gene in transgenic tobaccos was higher than that of cpw (35% and 6.25% respectively). Run on results indicate that the silencing of cp gene happened at post-transcriptional level. The resistance of transgenic tobaccos carrying cpm genes to PVX is increased compared with that of transformants carrying cpw genes. These results suggest that the resistance of transgenic tobacco to PVX can be enhanced by codon replacement.
文摘The plant expression vector of the coat protein(CP) gene of cucumber mosaic virus (CMV) BS strain was used to transform three kinds of pepper (Capsicum annuum) tissues (cotyledon, stem and root) by agrobacterium-mediated co-cultivation. 53%-68.4% of the total tissues (639) can be induced to be calli, but only cotyledon calli can be further regenerated to form shoots (regenerated efficiency 39.7%). 70%(42/60) of the putative transformed plants were confirmed to have CP gene in their genomes by Southern blot. The mRNAs and the CP were respectively found in 80% of transgenic plants by Northern blot and DAS-ELISA. 24 of the transgenic plants expressing CP gene of BS strain showed three kinds of resistant level (severe symptom, delay of symptomatic development, no symptom) to infection of CMV-BS and of CMV-P. However, there was distinctly higher resistance to inoculation of CMV-BS than that with CMV-P in these transgenic plants.