期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Paper-based aqueous Al ion battery with water-in-salt electrolyte
1
作者 Yifei Wang Wending Pan +4 位作者 Kee Wah Leong Yingguang Zhang Xiaolong Zhao Shijing Luo Dennis Y.C.Leung 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1380-1388,共9页
Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a fl... Low-cost,flexible and safe battery technology is the key to the widespread usage of wearable electronics,among which the aqueous Al ion battery with water-in-salt electrolyte is a promising candidate.In this work,a flexible aqueous Al ion battery is developed using cellulose paper as substrate.The water-in-salt electrolyte is stored inside the paper,while the electrodes are either printed or attached on the paper surface,leading to a lightweight and thin-film battery prototype.Currently,this battery can tolerate a charge and discharge rate as high as 4 A g^(-1) without losing its storage capacity.The charge voltage is around 2.2 V,while the discharge plateau of 1.6–1.8 V is among the highest in reported aqueous Al ion batteries,together with a high discharge specific capacity of~140 mAh g^(-1).However,due to the water electrolysis side reaction,the faradaic efficiency can only reach 85%with a cycle life of 250 due to the dry out of electrolyte.Benefited from using flexible materials and aqueous electrolyte,this paper-based Al ion battery can tolerate various deformations such as bending,rolling and even puncturing without losing its performance.When two single cells are connected in series,the battery pack can provide a charge voltage of 4.3 V and a discharge plateau as high as 3–3.6 V,which are very close to commercial Li ion batteries.Such a cheap,flexible and safe battery technology may be widely applied in low-cost and large-quantity applications,such as RFID tags,smart packages and wearable biosensors in the future. 展开更多
关键词 Al ion battery Aqueous electrolyte Water-in-salt paper battery Flexible battery
下载PDF
Development of flexible zinc–air battery with nanocomposite electrodes and a novel separator 被引量:5
2
作者 Zhiqian Wang Xianyang Meng +1 位作者 Zheqiong Wu Somenath Mitra 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期129-138,共10页
In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive... In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive additive in anode as they bridged the zinc particles. Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS) was applied as a co-binder to enhance both the conductivity and flexibility. A poly(acrylic acid)(PAA) and polyvinyl alcohol(PVA) coated paper separator was used to enhance the battery performance where the PVP–PAA layer facilitated electrolyte storage. The batteries remained functional under bending conditions and after bending. Multiple design optimizations were also carried out for storage and performance purposes. 展开更多
关键词 Flexible zinc–air battery Carbon nanotube Poly(acrylic acid) paper based battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部