A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based o...A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.展开更多
Corrugated paperboard is a kind of inexpensive and environmental-friendly packaging material, and may be made into pads of package cushioning to protect products from shock and vibration damage by isolation during dis...Corrugated paperboard is a kind of inexpensive and environmental-friendly packaging material, and may be made into pads of package cushioning to protect products from shock and vibration damage by isolation during distribution. This article deals with the characterization of dynamic packaging properties of corru-gated paperboard pads, such as dynamic cushioning curves, vibration transmissibility and frequency curves. The main feature of article is the evaluation on the dynamic shock cushioning property and vibration trans-missibility of corrugated paperboard pads by a series of experimental studies on the drop shock tester and vibration tester, the establishment of experimental formulas of dynamic cushioning curves, and the analysis of resonance frequencies and vibration transmissibility. By using the fitting polynomial of curve and method of the least mean square, the experimental formulas with third order polynomial function of dynamic cush-ioning curves for corrugated paperboard pads are obtained. By using linear vibration theory with single de-gree of freedom, the resonance frequencies, vibration transmissibility and damping ratios of corrugated pa-perboard pads at different static loads are acquired. All results show the dynamic properties relevant to de-sign applications of corrugated paperboard pads for protective packaging.展开更多
The influence of different coating formulas and times on the water and oil resistance of paperboard was studied. The water and oil resistance of paperboard coated with a modified butadiene-styrene copolymer latex and ...The influence of different coating formulas and times on the water and oil resistance of paperboard was studied. The water and oil resistance of paperboard coated with a modified butadiene-styrene copolymer latex and fluorinated anion grease-proof agent was better than that coated with modified butadiene-styrene copolymer latex,where the modified butadiene-styrene copolymer latex was used as the pre-coating substrate and the F1516 fluorinated grease-proof agent was used as the top coating material. By coating modified butadiene-styrene copolymer latex with 30% solid content and F1516 fluorinated grease-proof agent with 24% solid content,the oil resistance of paperboard could reach anti-oil grade 12 and the water resistance could increased by98. 64%( compared with the base paperboard without any coating treatment).展开更多
A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on th...A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.展开更多
The food packaging industry generally uses papers and paperboards (PPBs) especially for disposable products. According to the Framework Regulation (EC) No. 1935/2004 of the European Union, no transfer of contamination...The food packaging industry generally uses papers and paperboards (PPBs) especially for disposable products. According to the Framework Regulation (EC) No. 1935/2004 of the European Union, no transfer of contamination should occur from food packaging material to the food items. The aim of this study was to determine the presence, numbers, source and different kinds of bacteria present in food packaging PPBs with various contents of pulp fiber. The samples were randomly collected from popular confectioners and fast food restaurants in Saharanpur, India. The results indicated the presence of bacteria in all the samples, ranging from 1.3 × 102 to 6.1 × 103 cfu/g. Most of the samples contained bacteria in more than the permitted concentration of 2.5 × 102 cfu/g as set by Food and Drug Administration (FDA). The detected bacteria were from genera Bacillacea, Staphylococcus and Pseudomonas. According to the FDA declaration, pathogenic bacteria such as B. cereus and S. aureus have been associated with food borne diseases (FBD). Some contaminants in food packaging PPBs were found to be B. subtilis and P. aeroginosa, which produce enzymes like peroxidases and lipoxygenases that are odor generating enzymes.展开更多
In the present study, the varieties of papers and paperboards (PPBs) used in India for food packaging were qualitatively and quantitatively analyzed for the heavy metal contamination with the help of ICP-OES (Inductiv...In the present study, the varieties of papers and paperboards (PPBs) used in India for food packaging were qualitatively and quantitatively analyzed for the heavy metal contamination with the help of ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Total 10 different types of food packaging PPBs were procured from local market and analyzed for 14 heavy metals (Al, As, B, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Te, Ti and V). Quantities of heavy metals in the samples were compared with permitted values published by the European Council. Heavy metals like Al, As, Ba, Cr, Co, Ni, Pb and V were observed in more than the permitted concentration in some of the samples. Heavy metals toxicity in food packaging material is a serious concern as the edible items get exposed to these metals and also generate volatile odorous compounds which considerably impact the quality of food and affect consumer's health.展开更多
Paperboard is an environment-friendly multi-layer material widely used for packaging applications. However, for food packaging paperboard lacks essential barrier properties towards oxygen and water vapor. Conventional...Paperboard is an environment-friendly multi-layer material widely used for packaging applications. However, for food packaging paperboard lacks essential barrier properties towards oxygen and water vapor. Conventional solutions to enhance these barrier properties (e.g. paperboard film coating with synthetic polymers) require special manufacturing facilities and difficult the end-of-life disposal and recycling of the paperboard. Paperboard coating with silica-based formulations is an eco-friendly alternative hereby disclosed. Silica-nanocoatings were prepared by sol-gel synthesis, with or without the addition of Zn(2)-Al-NO3 layered double hydroxides (LDHs), and applied on the surface (ca 2 g/m2) of industrial paperboard samples by a roll-to-roll technique. The physicochemical features of silica-nanocoatings were studied by FTIR-ATR, SEM/EDS, XRD analysis and surface energy measurements. The barrier properties of uncoated and silica-coated paperboard were accessed by water vapor transmission rate (WVTR) and oxygen permeability (Jo2) measurements. The best barrier results were obtained for paperboard coated with a mixture of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES), with and without the incorporation of LDHs.展开更多
Influence factors on the biodegradation of cellulose fiber composite paperboard were studied experimentally and explained theoretically. The results show that the inorganic salts as nutriment added in the soil lixiviu...Influence factors on the biodegradation of cellulose fiber composite paperboard were studied experimentally and explained theoretically. The results show that the inorganic salts as nutriment added in the soil lixivium, the ratio of C/N, the temperature for biodegradation and content of basaltic fibers in the composite paperboard are the main influence factors.展开更多
基金Funded in part by the National Natural Science Foundation of China(No.51008306)
文摘A new kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results, we analyzed the mechanical behaviors of the material under different conditions and obtained the inherent influencing laws of some factors on the material's dynamic buffering performance. It was shown that the dynamic buffering performance varied directly with impact velocity, and inversely with the void diameter, thickness and buffeting area of the composite material.
文摘Corrugated paperboard is a kind of inexpensive and environmental-friendly packaging material, and may be made into pads of package cushioning to protect products from shock and vibration damage by isolation during distribution. This article deals with the characterization of dynamic packaging properties of corru-gated paperboard pads, such as dynamic cushioning curves, vibration transmissibility and frequency curves. The main feature of article is the evaluation on the dynamic shock cushioning property and vibration trans-missibility of corrugated paperboard pads by a series of experimental studies on the drop shock tester and vibration tester, the establishment of experimental formulas of dynamic cushioning curves, and the analysis of resonance frequencies and vibration transmissibility. By using the fitting polynomial of curve and method of the least mean square, the experimental formulas with third order polynomial function of dynamic cush-ioning curves for corrugated paperboard pads are obtained. By using linear vibration theory with single de-gree of freedom, the resonance frequencies, vibration transmissibility and damping ratios of corrugated pa-perboard pads at different static loads are acquired. All results show the dynamic properties relevant to de-sign applications of corrugated paperboard pads for protective packaging.
文摘The influence of different coating formulas and times on the water and oil resistance of paperboard was studied. The water and oil resistance of paperboard coated with a modified butadiene-styrene copolymer latex and fluorinated anion grease-proof agent was better than that coated with modified butadiene-styrene copolymer latex,where the modified butadiene-styrene copolymer latex was used as the pre-coating substrate and the F1516 fluorinated grease-proof agent was used as the top coating material. By coating modified butadiene-styrene copolymer latex with 30% solid content and F1516 fluorinated grease-proof agent with 24% solid content,the oil resistance of paperboard could reach anti-oil grade 12 and the water resistance could increased by98. 64%( compared with the base paperboard without any coating treatment).
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008306)
文摘A kind of composite buffering material was made by filling the voids of honeycomb paperboard with polyurethane. Drop tests were performed to evaluate the dynamic energy absorption capacity of the material. Based on the tests results,the mechanical behaviors of the material under low velocity dynamic impact conditions were analyzed. It was shown that the absorbed energy of the composite material varies inversely with the void diameter. The absorbed energy of the composite material is 1- 2 times than that of honeycomb paperboard and polyurethane. The energy absorption efficiency of the composite material is better than those of honeycomb paperboard and polyurethane.
文摘The food packaging industry generally uses papers and paperboards (PPBs) especially for disposable products. According to the Framework Regulation (EC) No. 1935/2004 of the European Union, no transfer of contamination should occur from food packaging material to the food items. The aim of this study was to determine the presence, numbers, source and different kinds of bacteria present in food packaging PPBs with various contents of pulp fiber. The samples were randomly collected from popular confectioners and fast food restaurants in Saharanpur, India. The results indicated the presence of bacteria in all the samples, ranging from 1.3 × 102 to 6.1 × 103 cfu/g. Most of the samples contained bacteria in more than the permitted concentration of 2.5 × 102 cfu/g as set by Food and Drug Administration (FDA). The detected bacteria were from genera Bacillacea, Staphylococcus and Pseudomonas. According to the FDA declaration, pathogenic bacteria such as B. cereus and S. aureus have been associated with food borne diseases (FBD). Some contaminants in food packaging PPBs were found to be B. subtilis and P. aeroginosa, which produce enzymes like peroxidases and lipoxygenases that are odor generating enzymes.
文摘In the present study, the varieties of papers and paperboards (PPBs) used in India for food packaging were qualitatively and quantitatively analyzed for the heavy metal contamination with the help of ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Total 10 different types of food packaging PPBs were procured from local market and analyzed for 14 heavy metals (Al, As, B, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Te, Ti and V). Quantities of heavy metals in the samples were compared with permitted values published by the European Council. Heavy metals like Al, As, Ba, Cr, Co, Ni, Pb and V were observed in more than the permitted concentration in some of the samples. Heavy metals toxicity in food packaging material is a serious concern as the edible items get exposed to these metals and also generate volatile odorous compounds which considerably impact the quality of food and affect consumer's health.
基金Authors acknowledge the financial support from NANOBARRIER EU FP7 project(FP7-NMP-2011-LARGE-5,ref.N˚280759) CICECO-Aveiro Institute of Materials grant financed by FCT(PEst-C/CTM/LA0011/2013)The financial support from the project CICECO-Aveiro Institute of Materials(Ref.FCT UID/CTM/50011/2013)is greatly acknowledged.
文摘Paperboard is an environment-friendly multi-layer material widely used for packaging applications. However, for food packaging paperboard lacks essential barrier properties towards oxygen and water vapor. Conventional solutions to enhance these barrier properties (e.g. paperboard film coating with synthetic polymers) require special manufacturing facilities and difficult the end-of-life disposal and recycling of the paperboard. Paperboard coating with silica-based formulations is an eco-friendly alternative hereby disclosed. Silica-nanocoatings were prepared by sol-gel synthesis, with or without the addition of Zn(2)-Al-NO3 layered double hydroxides (LDHs), and applied on the surface (ca 2 g/m2) of industrial paperboard samples by a roll-to-roll technique. The physicochemical features of silica-nanocoatings were studied by FTIR-ATR, SEM/EDS, XRD analysis and surface energy measurements. The barrier properties of uncoated and silica-coated paperboard were accessed by water vapor transmission rate (WVTR) and oxygen permeability (Jo2) measurements. The best barrier results were obtained for paperboard coated with a mixture of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES), with and without the incorporation of LDHs.
基金The work is funded by the science and research plant foundation of Hebei province educational committee (No.2002163).
文摘Influence factors on the biodegradation of cellulose fiber composite paperboard were studied experimentally and explained theoretically. The results show that the inorganic salts as nutriment added in the soil lixivium, the ratio of C/N, the temperature for biodegradation and content of basaltic fibers in the composite paperboard are the main influence factors.