Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,...Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,solar thermal energy and CO_(2)capture are jointly integrated into the coal-fired power plant in this study.The solar thermal energy is employed to meet the heat requirement of the CO_(2)capture process,thereby avoiding the electricity loss caused by self-driven CO_(2)capture.Furthermore,the heat released from the carbonation reaction of MgO adsorbent is integrated into the steam Rankine cycle.By partially substituting the extracted steam for feedwater heating,the electricity output of the power plant is further increased.According to the results from the developed model,the system could achieve a CO_(2)capture rate of 86.5%and an electricity output enhancement of 9.8%compared to the reference system,which consists of a self-driven CO_(2)capture coal-fired power plant and PV generation unit.The operational strategy is also optimized and the amount of CO_(2)emission reduction on a typical day is increased by 11.06%.This work shows a way to combine fossil fuels and renewable energy for low carbon emissions and efficient power generation.展开更多
In this paper,the heat flow diagram of steam turbine model K-6-35 has been analyzed for innovative approaches towards improving the techno-economic and ecological indices of the small-scale power generation system.The...In this paper,the heat flow diagram of steam turbine model K-6-35 has been analyzed for innovative approaches towards improving the techno-economic and ecological indices of the small-scale power generation system.The numerical analysis is performed using IPSEpro process simulation software based on heat balance method under four different cases.It was found that the study of Solar Assisted Power Generation(SAPG)system has important practical significance in power generation with minimum pollutants and maximum efficiency.Both fuel-saving(FS)and power-boosting(PB)operation modes of the SAPG system are considered.Various types of stand-alone solar thermal power plants exhibited very low overall efficiency with many ecological advantages compared to the conventional thermal power plant based on fossil fuels.Besides,SAPG system with FS mode presented higher techno-economic indices and operation performance.An important reduction in fuel consumption and pollutant emissions could be obtained with SAPG system.Considering the hourly,daily,monthly,and yearly amount of saved fuel and reduced pollutants in the whole power plant,the SAPG system with FS mode can largely contribute to high ecological indices power generation.A thermal efficiency increased by 1.31%with specific equivalent fuel consumption decreased by 22.54 g/kWh was obtained with SAPG system.The coal consumption was reduced by 4.75%when SAPG system operates in FS mode.展开更多
In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cool...In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cooling and power production.Thermal efficiency,exergy efficiency,exergy destruction and the coefficient of performance of the cogeneration system were considered to be performance parameters.A computer program was developed in engineering equation-solver software for analysis.Influences of the PTC design parameters(solar irradiation,solar-beam incidence angle and velocity of the heat-transfer fluid in the absorber tube),turbine inlet pressure,condenser and evaporator temperature on system performance were discussed.Furthermore,the performance of the cogeneration system was also compared with and without PTCs.It was concluded that it was necessary to design the PTCs carefully in order to achieve better cogeneration performance.The highest values of exergy efficiency,thermal efficiency and exergy destruction of the cogeneration system were 92.9%,51.13%and 1437 kW,respectively,at 0.95 kW/m2 of solar irradiation based on working fluid R227ea,but the highest coefficient of performance was found to be 2.278 on the basis of working fluid R134a.It was also obtained from the results that PTCs accounted for 76.32%of the total exergy destruction of the overall system and the cogeneration system performed well without considering solar performance.展开更多
基金Financial supports from the National Natural Science Foundation of China(5210060338)National Natural Science Foundation of China(Grant No.52293414)+2 种基金Jiangsu Natural Science Foundation(BK20200731)Science and Technology Program of China Huadian Corporation(CHDKJ22-01-23)Jiangsu graduate research and practice innovation project(18120000312321)。
文摘Coal-fired power plant is a major contributor to greenhouse gas emissions.The post-combustion capture is a promising method for CO_(2)emission reduction but the high thermal demand is unbearable.To address this issue,solar thermal energy and CO_(2)capture are jointly integrated into the coal-fired power plant in this study.The solar thermal energy is employed to meet the heat requirement of the CO_(2)capture process,thereby avoiding the electricity loss caused by self-driven CO_(2)capture.Furthermore,the heat released from the carbonation reaction of MgO adsorbent is integrated into the steam Rankine cycle.By partially substituting the extracted steam for feedwater heating,the electricity output of the power plant is further increased.According to the results from the developed model,the system could achieve a CO_(2)capture rate of 86.5%and an electricity output enhancement of 9.8%compared to the reference system,which consists of a self-driven CO_(2)capture coal-fired power plant and PV generation unit.The operational strategy is also optimized and the amount of CO_(2)emission reduction on a typical day is increased by 11.06%.This work shows a way to combine fossil fuels and renewable energy for low carbon emissions and efficient power generation.
基金This work was supported by the China National Key Research and Development Plan Project(Grant No.2018YFA0702300)the National Natural Science Foundation of China(Grant No.51522601)and the China Postdoctoral Science Foundation Fund(Grant No.2019M651284).
文摘In this paper,the heat flow diagram of steam turbine model K-6-35 has been analyzed for innovative approaches towards improving the techno-economic and ecological indices of the small-scale power generation system.The numerical analysis is performed using IPSEpro process simulation software based on heat balance method under four different cases.It was found that the study of Solar Assisted Power Generation(SAPG)system has important practical significance in power generation with minimum pollutants and maximum efficiency.Both fuel-saving(FS)and power-boosting(PB)operation modes of the SAPG system are considered.Various types of stand-alone solar thermal power plants exhibited very low overall efficiency with many ecological advantages compared to the conventional thermal power plant based on fossil fuels.Besides,SAPG system with FS mode presented higher techno-economic indices and operation performance.An important reduction in fuel consumption and pollutant emissions could be obtained with SAPG system.Considering the hourly,daily,monthly,and yearly amount of saved fuel and reduced pollutants in the whole power plant,the SAPG system with FS mode can largely contribute to high ecological indices power generation.A thermal efficiency increased by 1.31%with specific equivalent fuel consumption decreased by 22.54 g/kWh was obtained with SAPG system.The coal consumption was reduced by 4.75%when SAPG system operates in FS mode.
基金support of Department of Mechanical,Industrial&Production,Automobile Engineering of the Delhi Technological University,New Delhi,India.
文摘In this study,a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors(PTCs)coupled with a vapour-compression refrigeration cycle simultaneously for cooling and power production.Thermal efficiency,exergy efficiency,exergy destruction and the coefficient of performance of the cogeneration system were considered to be performance parameters.A computer program was developed in engineering equation-solver software for analysis.Influences of the PTC design parameters(solar irradiation,solar-beam incidence angle and velocity of the heat-transfer fluid in the absorber tube),turbine inlet pressure,condenser and evaporator temperature on system performance were discussed.Furthermore,the performance of the cogeneration system was also compared with and without PTCs.It was concluded that it was necessary to design the PTCs carefully in order to achieve better cogeneration performance.The highest values of exergy efficiency,thermal efficiency and exergy destruction of the cogeneration system were 92.9%,51.13%and 1437 kW,respectively,at 0.95 kW/m2 of solar irradiation based on working fluid R227ea,but the highest coefficient of performance was found to be 2.278 on the basis of working fluid R134a.It was also obtained from the results that PTCs accounted for 76.32%of the total exergy destruction of the overall system and the cogeneration system performed well without considering solar performance.