This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.
The purpose of this paper is to derive some pointwise second-order necessary conditions for stochastic optimal controls in the general case that the control variable enters into both the drift and the diffusion terms....The purpose of this paper is to derive some pointwise second-order necessary conditions for stochastic optimal controls in the general case that the control variable enters into both the drift and the diffusion terms.When the control region is convex, a pointwise second-order necessary condition for stochastic singular optimal controls in the classical sense is established; while when the control region is allowed to be nonconvex, we obtain a pointwise second-order necessary condition for stochastic singular optimal controls in the sense of Pontryagin-type maximum principle. It is found that, quite different from the first-order necessary conditions,the correction part of the solution to the second-order adjoint equation appears in the pointwise second-order necessary conditions whenever the diffusion term depends on the control variable, even if the control region is convex.展开更多
In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and effici...In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.展开更多
In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by ...In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions.We derive a posteriori error estimates for both the state and the control approximation.Such estimates,which are apparently not available in the literature,are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.展开更多
This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spac...This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.展开更多
In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measur...In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measure and an independent Brownian motion.The control domain is assumed to be convex.Pointwise second-order maximum principle for controlled jump diffusion in terms of the martingale with respect to the time variable is proved.The proof of the main result is based on variational approach using the stochastic calculus of jump diffusions and some estimates on the state processes.展开更多
In this paper,we investigate the superconvergence results for optimal control problems governed by parabolic equations with semidiscrete mixed finite element approximation.We use the lowest order mixed finite element ...In this paper,we investigate the superconvergence results for optimal control problems governed by parabolic equations with semidiscrete mixed finite element approximation.We use the lowest order mixed finite element spaces to discrete the state and costate variables while use piecewise constant function to discrete the control variable.Superconvergence estimates for both the state variable and its gradient variable are obtained.展开更多
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem...In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.展开更多
This paper establishes a global Carleman inequality of parabolic equations with mixed boundary conditions and an estimate of the solution. Further, we prove exact controllability of the equation by controls acting on ...This paper establishes a global Carleman inequality of parabolic equations with mixed boundary conditions and an estimate of the solution. Further, we prove exact controllability of the equation by controls acting on an arbitrarily given subdomain or subboundary.展开更多
In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formula...In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formulated and analyzed. The strong variation method, due originally to Mayne et al to solve the optimal control problem of a lumped parameter system, is extended to solve an optimal control problem governed by semilinear parabolic equation, a necessary condition is obtained, the strong variation algorithm for this optimal control problem is presented, and the corresponding convergence result of the algorithm is verified.展开更多
This paper is devoted to the study of the existence of insensitizing controls for the parabolic equation with equivalued surface boundary conditions. The insensitizing problem consists in finding a control function su...This paper is devoted to the study of the existence of insensitizing controls for the parabolic equation with equivalued surface boundary conditions. The insensitizing problem consists in finding a control function such that some energy functional of the equation is locally insensitive to a perturbation of the initial data. As usual, this problem can be reduced to a partially null controllability problem for a cascade system of two parabolic equations with equivalued surface boundary conditions. Compared the problems with usual boundary conditions~ in the present case we need to derive a new global Carleman estimate, for which, in particular one needs to construct a new weight function to match the equivalued surface boundary conditions.展开更多
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization...We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.展开更多
In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables a...In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element and linear finite element,and the control vari-able is approximated by piecewise constant functions.The time discretization of the state and co-state are based on finite difference methods.First,we derive a priori error estimates for the control variable,the state variables and the adjoint state variables.Second,by use of energy approach,we derive a posteriori error estimates for optimal control problems,assuming that only the underlying mesh is static.A numerical example is presented to verify the theoretical results on a priori error estimates.展开更多
We consider optimal control of a bilinear parabolic equation. The determination of such control requires to minimize a given energy performance measure. The performance measure of the system is taken as a combination ...We consider optimal control of a bilinear parabolic equation. The determination of such control requires to minimize a given energy performance measure. The performance measure of the system is taken as a combination of its modified total energy and the penalty term describing the approach used in the control process. Using an appropriate transformation modal expansion, the optimal control of a distributed parameter system (DPS) is simplified into the optimal control of a bilinear time-varying lumped parameter system (LPS). A computational efficient formulation to evaluate the optimal trajectory and control of the system is determined. It is based on the parametrization of the state and control variables by using finite wavelets. Numerical examples are provided to demonstrate the applicability and the efficiency of the proposed method and the results are quite satisfactory.展开更多
We consider a family of optimal control problems where the control variable is given by a boundary condition of Neumann type. This family is governed by parabolic variational inequalities of the second kind. We prove ...We consider a family of optimal control problems where the control variable is given by a boundary condition of Neumann type. This family is governed by parabolic variational inequalities of the second kind. We prove the strong convergence of the optimal control and state systems associated to this family to a similar optimal control problem. This work solves the open problem left by the authors in IFIP TC7 CSMO2011.展开更多
The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physi...The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma and other real life problems. In this paper, we deal with a class of the constrained OCP for parabolic systems. It is converted to new unconstrained OCP by adding a penalty function to the cost functional. The existence solution of the considering system of parabolic optimal control problem (POCP) is introduced. In this way, the uniqueness theorem for the solving POCP is introduced. Therefore, a theorem for the sufficient differentiability conditions has been proved.展开更多
This paper is concerned with the optimal distributed control problem governed by b-equation. We firstly investigate the existence and uniqueness of weak solution for the controlled system with appropriate initial valu...This paper is concerned with the optimal distributed control problem governed by b-equation. We firstly investigate the existence and uniqueness of weak solution for the controlled system with appropriate initial value and boundary condition. By contrasting with our previous result, the proof without considering viscous coefficient is a big improvement. Secondly, based on the well-posedness result, we find a unique optimal control for the controlled system with the quadratic cost functional. Moreover, by means of the optimal control theory, we obtain the sufficient and necessary optimality condition of an optimal control, which is another major novelty of this paper. Finally, we also present the optimality conditions corresponding to two physical meaningful distributive observation cases.展开更多
In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation...In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation and the finite element approximation scheme.Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L^(2)norms.Furthermore some numerical tests are presented to verify the theoretical results.展开更多
New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE)...New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space.展开更多
The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in whic...The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.展开更多
基金This work was supported by National Natural Science Foundation of China (10401041)Natural Science Foundation of Hubei Province (2004ABA009)
文摘This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2011CB808002)National Natural Science Foundation of China(Grant Nos.11221101+4 种基金1123100711401404 and 11471231)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1273)the Changjiang Scholars Program from the Chinese Education Ministrythe Spanish Science and Innovation Ministry(Grant No.MTM2011-29306)
文摘The purpose of this paper is to derive some pointwise second-order necessary conditions for stochastic optimal controls in the general case that the control variable enters into both the drift and the diffusion terms.When the control region is convex, a pointwise second-order necessary condition for stochastic singular optimal controls in the classical sense is established; while when the control region is allowed to be nonconvex, we obtain a pointwise second-order necessary condition for stochastic singular optimal controls in the sense of Pontryagin-type maximum principle. It is found that, quite different from the first-order necessary conditions,the correction part of the solution to the second-order adjoint equation appears in the pointwise second-order necessary conditions whenever the diffusion term depends on the control variable, even if the control region is convex.
文摘In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.
基金supported in part by Hunan Education Department Key Project 10A117 and Hunan Provincial Innovation Foundation for Postgraduate CX2010B247supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)and National Science Foundation of China(10971074)+3 种基金supported in part by the NSFC Key Project(11031006)Hunan Provincial NSF Project(10JJ7001)the NSFC for Distinguished Young Scholars(10625106)National Basic Research Program of China under the Grant 2005 CB321701.
文摘In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions.We derive a posteriori error estimates for both the state and the control approximation.Such estimates,which are apparently not available in the literature,are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.
基金supported by the National Natural Science Foundation of Chinaunder Grant No.11271145Foundation for Talent Introduction of Guangdong Provincial University+3 种基金Fund for the Doctoral Program of Higher Education under Grant No.20114407110009the Project of Department of Education of Guangdong Province under Grant No.2012KJCX0036supported by Hunan Education Department Key Project 10A117the National Natural Science Foundation of China under Grant Nos.11126304 and 11201397
文摘This paper considers the variational discretization for the constrained optimal control problem governed by linear parabolic equations.The state and co-state are approximated by RaviartThomas mixed finite element spaces,and the authors do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control.A priori error estimates are derived for the state,the co-state,and the control.Some numerical examples are presented to confirm the theoretical investigations.
文摘In this paper,we establish a second-order necessary conditions for stochastic optimal control for jump diffusions.The controlled system is described by a stochastic differential systems driven by Poisson random measure and an independent Brownian motion.The control domain is assumed to be convex.Pointwise second-order maximum principle for controlled jump diffusion in terms of the martingale with respect to the time variable is proved.The proof of the main result is based on variational approach using the stochastic calculus of jump diffusions and some estimates on the state processes.
基金This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)the first author is also supported by the Tian Yuan Project of the National Natural Sciences Foundation of China(11026092).
文摘In this paper,we investigate the superconvergence results for optimal control problems governed by parabolic equations with semidiscrete mixed finite element approximation.We use the lowest order mixed finite element spaces to discrete the state and costate variables while use piecewise constant function to discrete the control variable.Superconvergence estimates for both the state variable and its gradient variable are obtained.
基金the National Basic Research Programthe National Natural Science Foundation of China(Grant No.2005CB321703)+2 种基金Scientific Research Fund of Hunan Provincial Education Departmentthe Outstanding Youth Scientist of the National Natural Science Foundation of China(Grant No.10625106)the National Basic Research Program of China(Grant No.2005CB321701)
文摘In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
文摘This paper establishes a global Carleman inequality of parabolic equations with mixed boundary conditions and an estimate of the solution. Further, we prove exact controllability of the equation by controls acting on an arbitrarily given subdomain or subboundary.
基金the Educational Department Foundation of Tianjin of Science and Technology (No.20042120).
文摘In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formulated and analyzed. The strong variation method, due originally to Mayne et al to solve the optimal control problem of a lumped parameter system, is extended to solve an optimal control problem governed by semilinear parabolic equation, a necessary condition is obtained, the strong variation algorithm for this optimal control problem is presented, and the corresponding convergence result of the algorithm is verified.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10831007 and 60974035)
文摘This paper is devoted to the study of the existence of insensitizing controls for the parabolic equation with equivalued surface boundary conditions. The insensitizing problem consists in finding a control function such that some energy functional of the equation is locally insensitive to a perturbation of the initial data. As usual, this problem can be reduced to a partially null controllability problem for a cascade system of two parabolic equations with equivalued surface boundary conditions. Compared the problems with usual boundary conditions~ in the present case we need to derive a new global Carleman estimate, for which, in particular one needs to construct a new weight function to match the equivalued surface boundary conditions.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11271145), the Foundation for Talent Introduction of Guangdong Provincial University, the Specialized Research Fund for the Doctoral Program of Higher Education (20114407110009), and the Project of Department of Education of Guangdong Province (2012KJCX0036).
文摘We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.
基金This work was supported by National Natural Science Foundation of China(11601014,11626037,11526036)China Postdoctoral Science Foundation(2016M 601359)+4 种基金Scientific and Technological Developing Scheme of Jilin Province(20160520108 JH,20170101037JC)Science and Technology Research Project of Jilin Provincial Depart-ment of Education(201646)Special Funding for Promotion of Young Teachers of Beihua University,Natural Science Foundation of Hunan Province(14JJ3135)the Youth Project of Hunan Provincial Education Department(15B096)the construct program of the key discipline in Hunan University of Science and Engineering.
文摘In this paper,we investigate a priori and a posteriori error estimates of fully discrete H^(1)-Galerkin mixed finite element methods for parabolic optimal control prob-lems.The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element and linear finite element,and the control vari-able is approximated by piecewise constant functions.The time discretization of the state and co-state are based on finite difference methods.First,we derive a priori error estimates for the control variable,the state variables and the adjoint state variables.Second,by use of energy approach,we derive a posteriori error estimates for optimal control problems,assuming that only the underlying mesh is static.A numerical example is presented to verify the theoretical results on a priori error estimates.
文摘We consider optimal control of a bilinear parabolic equation. The determination of such control requires to minimize a given energy performance measure. The performance measure of the system is taken as a combination of its modified total energy and the penalty term describing the approach used in the control process. Using an appropriate transformation modal expansion, the optimal control of a distributed parameter system (DPS) is simplified into the optimal control of a bilinear time-varying lumped parameter system (LPS). A computational efficient formulation to evaluate the optimal trajectory and control of the system is determined. It is based on the parametrization of the state and control variables by using finite wavelets. Numerical examples are provided to demonstrate the applicability and the efficiency of the proposed method and the results are quite satisfactory.
基金partly supported by the Institut Camille Jordan ST-Etienne Universitythe projects Argentine ANPCyT PICTO Austral 2008 # 73 and SOARD-AFOSR (No. FA9550-10-1-0023)
文摘We consider a family of optimal control problems where the control variable is given by a boundary condition of Neumann type. This family is governed by parabolic variational inequalities of the second kind. We prove the strong convergence of the optimal control and state systems associated to this family to a similar optimal control problem. This work solves the open problem left by the authors in IFIP TC7 CSMO2011.
文摘The problems of optimal control (OCPs) related to PDEs are a very active area of research. These problems deal with the processes of mechanical engineering, heat aeronautics, physics, hydro and gas dynamics, the physics of plasma and other real life problems. In this paper, we deal with a class of the constrained OCP for parabolic systems. It is converted to new unconstrained OCP by adding a penalty function to the cost functional. The existence solution of the considering system of parabolic optimal control problem (POCP) is introduced. In this way, the uniqueness theorem for the solving POCP is introduced. Therefore, a theorem for the sufficient differentiability conditions has been proved.
文摘This paper is concerned with the optimal distributed control problem governed by b-equation. We firstly investigate the existence and uniqueness of weak solution for the controlled system with appropriate initial value and boundary condition. By contrasting with our previous result, the proof without considering viscous coefficient is a big improvement. Secondly, based on the well-posedness result, we find a unique optimal control for the controlled system with the quadratic cost functional. Moreover, by means of the optimal control theory, we obtain the sufficient and necessary optimality condition of an optimal control, which is another major novelty of this paper. Finally, we also present the optimality conditions corresponding to two physical meaningful distributive observation cases.
基金W.F.Shen was supported by National Natural Science Foundation of China(Grant:11326226)Nature Science Foundation of Shandong Province(No.ZR2012GM018)D.P.Yang partially was supported by National Natural Science Foundation of China,Grant:11071080.
文摘In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation and the finite element approximation scheme.Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L^(2)norms.Furthermore some numerical tests are presented to verify the theoretical results.
文摘New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space.
基金supported by the National Natural Science Foundation of China(Nos.11061018,11261029)the Youth Foundation of Lanzhou Jiaotong University(No.2011028)+1 种基金the Long Yuan Young Creative Talents Support Program(No.252003)the Joint Funds of the Gansu Provincial Natural Science Foundation of China(No.1212RJZA043)
文摘The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.