A class of nonlinear singularly perturbed problem of ultra parabolic equations are considered. Using the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.
In this article, we discuss three difference schemes;for the numerical solution of singularity perturbed 1-D parabolic equations with singular coefficients using spline in compression. The proposed methods are of accu...In this article, we discuss three difference schemes;for the numerical solution of singularity perturbed 1-D parabolic equations with singular coefficients using spline in compression. The proposed methods are of accurate and applicable to problems in both cases singular and non-singular. Stability theory of a proposed method has been discussed and numerical examples have been given in support of the theoretical results.展开更多
We consider the Cauchy problem εu^″ε + δu′ε + Auε = 0, uε(0) = uo, u′ε(0) = ul, where ε 〉 0, δ 〉 0, H is a Hilbert space, and A is a self-adjoint linear non-negative operator on H with dense domai...We consider the Cauchy problem εu^″ε + δu′ε + Auε = 0, uε(0) = uo, u′ε(0) = ul, where ε 〉 0, δ 〉 0, H is a Hilbert space, and A is a self-adjoint linear non-negative operator on H with dense domain D(A). We study the convergence of (uε) to the solution of the limit problem ,δu' + Au = 0, u(0) = u0. For initial data (u0, u1) ∈ D(A1/2)× H, we prove global-in-time convergence with respect to strong topologies. Moreover, we estimate the convergence rate in the case where (u0, u1)∈ D(A3/2) ∈ D(A1/2), and we show that this regularity requirement is sharp for our estimates. We give also an upper bound for |u′ε(t)| which does not depend on ε.展开更多
In this paper we discuss, an initial-boundary value problem of hyperbolic type with first derivative with respect to x. The asymptotic solution is constructed and its uniform validity is proved under weader compatibil...In this paper we discuss, an initial-boundary value problem of hyperbolic type with first derivative with respect to x. The asymptotic solution is constructed and its uniform validity is proved under weader compatibility conditions. Then we develop an exponentially fitted difference scheme and establish discrete energy inequality. Finally, we prove that the solution of difference problem uniformly converges to the solution of the original problem.展开更多
We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform c...We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform convergence in the sense of discrete L2 norm is proved and numerical examples are presented.展开更多
The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the sp...The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given.展开更多
In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constru...In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constructed on a non-uniform grid. Finally, uniform convergence of the difference solution is proved in the sense of the discrete energy norm.展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
In this paper,a class of linear parabolic systems of singularly perturbed second-order differential equations of reaction-diffusion type with initial and Robin boundary conditions is considered.The components of the s...In this paper,a class of linear parabolic systems of singularly perturbed second-order differential equations of reaction-diffusion type with initial and Robin boundary conditions is considered.The components of the solution u→ of this system are smooth,whereas the components of αu→/αx exhibit parabolic boundary layers.A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested.This method is proved to be first-order convergent in time and essentially first-order convergent in the space variable in the maximum norm uniformly in the perturbation parameters.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
基金the National Natural Science Foundation of China(No.40676016)the Major State Basic Research Development Program of China(973 Program)(Nos.2003CB415101-03 and2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(No.KZCX3-SW-221)partly by E-Institutes of Shanghai Municipal Education Commission(No.E03004)
文摘A class of nonlinear singularly perturbed problem of ultra parabolic equations are considered. Using the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.
文摘In this article, we discuss three difference schemes;for the numerical solution of singularity perturbed 1-D parabolic equations with singular coefficients using spline in compression. The proposed methods are of accurate and applicable to problems in both cases singular and non-singular. Stability theory of a proposed method has been discussed and numerical examples have been given in support of the theoretical results.
文摘We consider the Cauchy problem εu^″ε + δu′ε + Auε = 0, uε(0) = uo, u′ε(0) = ul, where ε 〉 0, δ 〉 0, H is a Hilbert space, and A is a self-adjoint linear non-negative operator on H with dense domain D(A). We study the convergence of (uε) to the solution of the limit problem ,δu' + Au = 0, u(0) = u0. For initial data (u0, u1) ∈ D(A1/2)× H, we prove global-in-time convergence with respect to strong topologies. Moreover, we estimate the convergence rate in the case where (u0, u1)∈ D(A3/2) ∈ D(A1/2), and we show that this regularity requirement is sharp for our estimates. We give also an upper bound for |u′ε(t)| which does not depend on ε.
文摘In this paper we discuss, an initial-boundary value problem of hyperbolic type with first derivative with respect to x. The asymptotic solution is constructed and its uniform validity is proved under weader compatibility conditions. Then we develop an exponentially fitted difference scheme and establish discrete energy inequality. Finally, we prove that the solution of difference problem uniformly converges to the solution of the original problem.
文摘We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform convergence in the sense of discrete L2 norm is proved and numerical examples are presented.
文摘The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given.
文摘In this paper we consider the initial-boundary value problem for a second order hyperbolic equation with initial jump. The bounds on the derivatives of the exact solution are given. Then a difference scheme is constructed on a non-uniform grid. Finally, uniform convergence of the difference solution is proved in the sense of the discrete energy norm.
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
文摘In this paper,a class of linear parabolic systems of singularly perturbed second-order differential equations of reaction-diffusion type with initial and Robin boundary conditions is considered.The components of the solution u→ of this system are smooth,whereas the components of αu→/αx exhibit parabolic boundary layers.A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested.This method is proved to be first-order convergent in time and essentially first-order convergent in the space variable in the maximum norm uniformly in the perturbation parameters.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).