This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=ε...This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=εuxx, t〉0,x∈R, -αPxx+P=f(u)+α/2ux^2-1/2u^2, t〉0,x∈R, (E) with the initial data u(0,x)=u0(x)→u±, as x→±∞ (I) Here, u_ 〈 u+ are two constants and f(u) is a sufficiently smooth function satisfying f" (u) 〉 0 for all u under consideration. Main aim of this article is to study the relation between solutions to the above Cauchy problem and those to the Riemann problem of the following nonlinear conservation law It is well known that if u_ 〈 u+, the above Riemann problem admits a unique global entropy solution u^R(x/t) u^R(x/t)={u_,(f′)^-1(x/t),u+, x≤f′(u_)t, f′(u_)t≤x≤f′(u+)t, x≥f′(u+)t. Let U(t, x) be the smooth approximation of the rarefaction wave profile constructed similar to that of [21, 22, 23], we show that if u0(x) - U(0,x) ∈ H^1(R) and u_ 〈 u+, the above Cauchy problem (E) and (I) admits a unique global classical solution u(t, x) which tends to the rarefaction wave u^R(x/t) as → +∞ in the maximum norm. The proof is given by an elementary energy method.展开更多
In this paper, we study the blow-up solutions for the simplified Keller-Segel system modeling chemotaxis. We prove that there is the occurrence of δ blow-up to the radially symmetric solutions. We also prove that blo...In this paper, we study the blow-up solutions for the simplified Keller-Segel system modeling chemotaxis. We prove that there is the occurrence of δ blow-up to the radially symmetric solutions. We also prove that blow-up occur only at the point r =0.展开更多
基金supported by two grants from the National Natural Science Foundation of China under contracts 10431060 and 10329101, respectively
文摘This article is concerned with the global existence and large time behavior of solutions to the Cauchy problem for a parabolic-elliptic system related to the Camassa-Holm shallow water equation {ut+(u^2/2)x+px=εuxx, t〉0,x∈R, -αPxx+P=f(u)+α/2ux^2-1/2u^2, t〉0,x∈R, (E) with the initial data u(0,x)=u0(x)→u±, as x→±∞ (I) Here, u_ 〈 u+ are two constants and f(u) is a sufficiently smooth function satisfying f" (u) 〉 0 for all u under consideration. Main aim of this article is to study the relation between solutions to the above Cauchy problem and those to the Riemann problem of the following nonlinear conservation law It is well known that if u_ 〈 u+, the above Riemann problem admits a unique global entropy solution u^R(x/t) u^R(x/t)={u_,(f′)^-1(x/t),u+, x≤f′(u_)t, f′(u_)t≤x≤f′(u+)t, x≥f′(u+)t. Let U(t, x) be the smooth approximation of the rarefaction wave profile constructed similar to that of [21, 22, 23], we show that if u0(x) - U(0,x) ∈ H^1(R) and u_ 〈 u+, the above Cauchy problem (E) and (I) admits a unique global classical solution u(t, x) which tends to the rarefaction wave u^R(x/t) as → +∞ in the maximum norm. The proof is given by an elementary energy method.
文摘In this paper, we study the blow-up solutions for the simplified Keller-Segel system modeling chemotaxis. We prove that there is the occurrence of δ blow-up to the radially symmetric solutions. We also prove that blow-up occur only at the point r =0.