The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz me...The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz method has been used to find the numerical solution of the specified problem. The efficiency of the Ritz method depends on the choice of basis function based upon deflection of polar orthotropic plates. The effects of different plate parameters viz. elastic foundation, non-homogeneity, taper parameter and that of orthotropy on fundamental, second and third mode of vibration have been studied for clamped and simply-supported boundary conditions. Mode shapes for specified plates have been drawn for both the boundary conditions. Convergence and comparison studies have been carried out for specified plates.展开更多
The present paper deals with the effect of linearly temperature on transverse vibration of non-homogeneous orthotropic trapezoidal plate of parabolically varying thickness. The deflection function is defined by the pr...The present paper deals with the effect of linearly temperature on transverse vibration of non-homogeneous orthotropic trapezoidal plate of parabolically varying thickness. The deflection function is defined by the product of the equations of the prescribed continuous piecewise boundary shape. The non homogeneity of the plate is characterized by taking linear variation of the Young's modulus and parabolically variation of the density of the material. The non homogeneity is assumed to arise due to the variation in the density of the plate material and it is taken as parabolically. Rayleigh Ritz method is used to evaluate the fundamental frequencies. The equations of motion, governing the transverse vibrations of orthotropic trapezoidal plates, are derived with boundary condition clamped-simply supported-clamped-simply supported. Frequencies corresponding to first two modes of vibration are calculated for the trapezoidal plate for various combinations of the parameters of the non-homogeneity, thermal gradient, taper constant and for different values of the aspect ratios and shown by figures. All The results presented here are entirely new and are not found elsewhere. Comparison can only be made for homogeneous plates, and in that cases the results have been compared with those found in the existing literatures and are in excellent agreement.展开更多
The present analysis demonstrates the thermal effect on vibrations of a symmetric, non-homoge- neous trapezoidal plate with parabolically varying thickness in both directions. The variation in Young’s modulus and mas...The present analysis demonstrates the thermal effect on vibrations of a symmetric, non-homoge- neous trapezoidal plate with parabolically varying thickness in both directions. The variation in Young’s modulus and mass density is the main cause for the occurrence of non-homogeneity in plate’s material. In this consideration, density varies linearly in one direction. The governing differential equations have been derived by Rayleigh-Ritz method in order to attain fundamental frequencies. With C-S-C-S boundary condition, a two term deflection function has been considered. The effect of structural parameters such as taper constants, thermal gradient, aspect ratio and non-homogeneity constant has been investigated for first two modes of vibration. The obtained numerical results have been presented in tabular and graphical form.展开更多
This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1...This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.展开更多
The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak so...The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.展开更多
In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ...In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).展开更多
In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,...In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,the standard P,FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite,while near the interface,the maximum principle preserving immersed interface discretization is applied.In the time discretization,a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate.Correction terms are needed when the interface crosses grid lines.The moving interface is represented by the zero level set of a Lipschitz continuous function.Numerical experiments presented in this paper confirm second orderconvergence.展开更多
We consider the initial-boundary value problem for finitely degenerate parabolic equation. We first give sufficient conditions for the blow-up and global existence of the parabolic equation at high initial energy leve...We consider the initial-boundary value problem for finitely degenerate parabolic equation. We first give sufficient conditions for the blow-up and global existence of the parabolic equation at high initial energy level. Then, we establish the existence of solutions blowing up in finite time with initial data at arbitrary energy level. Finally, we estimate the upper bound of the blow-up time under certain conditions.展开更多
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC...A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid.展开更多
In fields like astronomy and radar technology, high-gain antennas are required for long-distance communication. Due to its relatively large gain, the use of parabolic antennas has become very popular over time, becaus...In fields like astronomy and radar technology, high-gain antennas are required for long-distance communication. Due to its relatively large gain, the use of parabolic antennas has become very popular over time, because they can easily achieve gains of above 30 dB at microwave and higher frequencies. Today, most systems’ success depends on how well the antennas perform. These antennas are available in different types and sizes. Each antenna’s effective area usually has less than the actual physical area of the antenna surface. This means that the unused area of the antenna is massive, and a waste. The aim of the research is to show that the actual physical aperture of a parabolic antenna can be reduced as much as possible to equal the effective area, as given by the antenna formula, thereby saving manufacturing costs, improve the aesthetics. In other words, the focus of this work is to experimentally show that reflector antenna can be made of smaller sizes but better performance. Measurements were taken from different positions from a parabolic antenna, the signal level measured and compared with signal levels for optimal performance.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized s...Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.展开更多
To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation,we focus on a system of three coupled Gross–Pitaevskii equation...To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation,we focus on a system of three coupled Gross–Pitaevskii equations with spacetime-dependent external potentials and temporally modulated gain-loss distributions.With different external potentials and gain-loss distributions,various solutions for controlled nonautonomous matterwave breathers and rogue waves are derived by the Darboux transformation method,such as breathers and rogue waves on arched and constant backgrounds which have the periodic and parabolic trajectories.Effects of the gain-loss distribution and linear potential on the breathers and rogue waves are studied.Nonautonomous two-breathers on the arched and constant backgrounds are also derived.展开更多
Topological non-trivial band structures are the core problem in the field of topological materials.We investigate the topological band structure in a system with controllable Dirac points from the perspective of wave ...Topological non-trivial band structures are the core problem in the field of topological materials.We investigate the topological band structure in a system with controllable Dirac points from the perspective of wave packet dynamics.By adding a third-nearest-neighboring coupling to the graphene model,additional pairs of Dirac points emerge.The emergence and annihilation of Dirac points result in hybrid and parabolic points,and we show that these band structures can be revealed by the dynamical behaviors of wave packets.In particular,for the gapped hybrid point,the motion of the wave packet shows a one-dimensional Zitterbewegung motion.Furthermore,we also show that the winding number associated with the Dirac point and parabolic point can be determined via the center of mass and spin texture of wave packets,respectively.The results of this work could motivate new experimental methods to characterize a system’s topological signatures through wave packet dynamics,which may also find applications in systems of other exotic topological materials.展开更多
In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arisi...In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.展开更多
The present study discusses the thermal performance of the receiver tube,which contains a wall with various fin shapes in the parabolic trough collector.Inserted fins and bulge surfaces of the inner wall of the receiv...The present study discusses the thermal performance of the receiver tube,which contains a wall with various fin shapes in the parabolic trough collector.Inserted fins and bulge surfaces of the inner wall of the receiver tube increase the turbulent fluid flow.In pursuance of uniform distribution of heat transfer,various fin shapes such as square-shape,circle-shape,triangle-shape,and combined square-circle shapes were inserted,examined,and compared.A study of the temperature differences and fluid flow is meaningful for this project therefore finite volume method was used to investigate heat transfer.Also,hybrid Nano-Fluid AL_(2)O_(3-)CuO,TiO_(2-)Cu,and AgMgO were applied to increase thermal diffusivity.When the combined square-circle-shaped fin was inserted,the thermal peak of fluid flow in the receiver tube was lower than the other studied fin shapes by almost 1%.Besides,the hybrid nano-fluid Ag-MgO Syltherm-oil-800 has lower thermal waste in comparison to others by more than 3%.展开更多
Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this in...Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.展开更多
Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high sola...Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant.展开更多
A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made...A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made that the lateral passive pressure is linear to the corresponding horizontal displacement and the soil behind retaining wall is composed of a set of springs and ideal rigid plasticity body, the general analytical method was proposed to calculate the passive rigid retaining wall pressure based on Coulomb theory. The analytical results show that the resultant forces of the passive earth pressure are equal to those of Coulomb's theory, but the distribution of the passive pressure and the position of the resultant force depend on the passive displacement mode parameter, and the former is a parabolic function of the soil depth. The analytical results are also in good agreement with the experimental ones.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
文摘The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz method has been used to find the numerical solution of the specified problem. The efficiency of the Ritz method depends on the choice of basis function based upon deflection of polar orthotropic plates. The effects of different plate parameters viz. elastic foundation, non-homogeneity, taper parameter and that of orthotropy on fundamental, second and third mode of vibration have been studied for clamped and simply-supported boundary conditions. Mode shapes for specified plates have been drawn for both the boundary conditions. Convergence and comparison studies have been carried out for specified plates.
文摘The present paper deals with the effect of linearly temperature on transverse vibration of non-homogeneous orthotropic trapezoidal plate of parabolically varying thickness. The deflection function is defined by the product of the equations of the prescribed continuous piecewise boundary shape. The non homogeneity of the plate is characterized by taking linear variation of the Young's modulus and parabolically variation of the density of the material. The non homogeneity is assumed to arise due to the variation in the density of the plate material and it is taken as parabolically. Rayleigh Ritz method is used to evaluate the fundamental frequencies. The equations of motion, governing the transverse vibrations of orthotropic trapezoidal plates, are derived with boundary condition clamped-simply supported-clamped-simply supported. Frequencies corresponding to first two modes of vibration are calculated for the trapezoidal plate for various combinations of the parameters of the non-homogeneity, thermal gradient, taper constant and for different values of the aspect ratios and shown by figures. All The results presented here are entirely new and are not found elsewhere. Comparison can only be made for homogeneous plates, and in that cases the results have been compared with those found in the existing literatures and are in excellent agreement.
文摘The present analysis demonstrates the thermal effect on vibrations of a symmetric, non-homoge- neous trapezoidal plate with parabolically varying thickness in both directions. The variation in Young’s modulus and mass density is the main cause for the occurrence of non-homogeneity in plate’s material. In this consideration, density varies linearly in one direction. The governing differential equations have been derived by Rayleigh-Ritz method in order to attain fundamental frequencies. With C-S-C-S boundary condition, a two term deflection function has been considered. The effect of structural parameters such as taper constants, thermal gradient, aspect ratio and non-homogeneity constant has been investigated for first two modes of vibration. The obtained numerical results have been presented in tabular and graphical form.
文摘This study includes an experimental and numerical analysis of the performances of a parabolic trough collector(PTC)with and without cylindrical turbulators.The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width.The related reflector is made of lined sheets of aluminum,and the tubes are made of stainless steel used for the absorption of heat.They have an outer diameter of 0.051 m and a wall thickness of 0.002 m.Water,used as a heat transfer fluid(HTF),flows through the absorber tube at a mass flow rate of 0.7 kg/s.The dimensions of cylindrical turbulators are 0.04 m in length and 0.047 m in diameter.Simulations are performed using the ANSYS Fluent 2020 R2 software.The PTC performance is evaluated by comparing the experimental and numerical outcomes,namely,the outlet temperature,useful heat,and thermal efficiency for a modified tube(MT)(tube with novel cylindrical turbulators)and a plain tube(PT)(tube without novel cylindrical turbulators).According to the results,the experimental outlet temperatures recorded 63.2°C and 50.5°C for the MT and PT,respectively.The heat gain reaches 1137.5 Win the MT and 685.8 Win the PT.Compared to the PT collector,the PTC exhibited a(1.64 times)higher efficiency.
基金partially supported by NSFC(11831003,12031012)the Institute of Modern Analysis-A Frontier Research Center of Shanghai。
文摘The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models.In this paper,we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in R^(3).Our results yield that if there exists a strong solution,then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY21A010016)the National Natural Science Foundation of China(11901550).
文摘In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).
基金partially supported by the National Natural Science Foundation of China(Grant No.12261070)the Ningxia Key Research and Development Project of China(Grant No.2022BSB03048)+2 种基金partially supported by the Simons(Grant No.633724)and by Fundacion Seneca grant 21760/IV/22partially supported by the Spanish national research project PID2019-108336GB-I00by Fundacion Séneca grant 21728/EE/22.Este trabajo es resultado de las estancias(21760/IV/22)y(21728/EE/22)financiadas por la Fundacion Séneca-Agencia de Ciencia y Tecnologia de la Region de Murcia con cargo al Programa Regional de Movilidad,Colaboracion Internacional e Intercambio de Conocimiento"Jimenez de la Espada".(Plan de Actuacion 2022).
文摘In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,the standard P,FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite,while near the interface,the maximum principle preserving immersed interface discretization is applied.In the time discretization,a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate.Correction terms are needed when the interface crosses grid lines.The moving interface is represented by the zero level set of a Lipschitz continuous function.Numerical experiments presented in this paper confirm second orderconvergence.
基金Supported by National Natural Science Foundation of China(Grant No.11801145)the Innovative Funds Plan of Henan University of Technology(Grant No.2020ZKCJ09)。
文摘We consider the initial-boundary value problem for finitely degenerate parabolic equation. We first give sufficient conditions for the blow-up and global existence of the parabolic equation at high initial energy level. Then, we establish the existence of solutions blowing up in finite time with initial data at arbitrary energy level. Finally, we estimate the upper bound of the blow-up time under certain conditions.
文摘A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid.
文摘In fields like astronomy and radar technology, high-gain antennas are required for long-distance communication. Due to its relatively large gain, the use of parabolic antennas has become very popular over time, because they can easily achieve gains of above 30 dB at microwave and higher frequencies. Today, most systems’ success depends on how well the antennas perform. These antennas are available in different types and sizes. Each antenna’s effective area usually has less than the actual physical area of the antenna surface. This means that the unused area of the antenna is massive, and a waste. The aim of the research is to show that the actual physical aperture of a parabolic antenna can be reduced as much as possible to equal the effective area, as given by the antenna formula, thereby saving manufacturing costs, improve the aesthetics. In other words, the focus of this work is to experimentally show that reflector antenna can be made of smaller sizes but better performance. Measurements were taken from different positions from a parabolic antenna, the signal level measured and compared with signal levels for optimal performance.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.
基金supported by the National Natural Science Foundation of China (Grant Nos.11975172 and 12261131495)。
文摘To study controlled evolution of nonautonomous matter-wave breathers and rogue waves in spinor Bose–Einstein condensates with spatiotemporal modulation,we focus on a system of three coupled Gross–Pitaevskii equations with spacetime-dependent external potentials and temporally modulated gain-loss distributions.With different external potentials and gain-loss distributions,various solutions for controlled nonautonomous matterwave breathers and rogue waves are derived by the Darboux transformation method,such as breathers and rogue waves on arched and constant backgrounds which have the periodic and parabolic trajectories.Effects of the gain-loss distribution and linear potential on the breathers and rogue waves are studied.Nonautonomous two-breathers on the arched and constant backgrounds are also derived.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1405300)the National Natural Science Foundation of China(Grant Nos.12074180 and 12104430)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012350)。
文摘Topological non-trivial band structures are the core problem in the field of topological materials.We investigate the topological band structure in a system with controllable Dirac points from the perspective of wave packet dynamics.By adding a third-nearest-neighboring coupling to the graphene model,additional pairs of Dirac points emerge.The emergence and annihilation of Dirac points result in hybrid and parabolic points,and we show that these band structures can be revealed by the dynamical behaviors of wave packets.In particular,for the gapped hybrid point,the motion of the wave packet shows a one-dimensional Zitterbewegung motion.Furthermore,we also show that the winding number associated with the Dirac point and parabolic point can be determined via the center of mass and spin texture of wave packets,respectively.The results of this work could motivate new experimental methods to characterize a system’s topological signatures through wave packet dynamics,which may also find applications in systems of other exotic topological materials.
基金supported by the National Natural Science Foundation of China (12201282)the Institute of Meteorological Big Data-Digital Fujian and the Fujian Key Laboratory of Data Science and Statistics (2020L0705)the Education Department of Fujian Province (JAT200325)。
文摘In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.
文摘The present study discusses the thermal performance of the receiver tube,which contains a wall with various fin shapes in the parabolic trough collector.Inserted fins and bulge surfaces of the inner wall of the receiver tube increase the turbulent fluid flow.In pursuance of uniform distribution of heat transfer,various fin shapes such as square-shape,circle-shape,triangle-shape,and combined square-circle shapes were inserted,examined,and compared.A study of the temperature differences and fluid flow is meaningful for this project therefore finite volume method was used to investigate heat transfer.Also,hybrid Nano-Fluid AL_(2)O_(3-)CuO,TiO_(2-)Cu,and AgMgO were applied to increase thermal diffusivity.When the combined square-circle-shaped fin was inserted,the thermal peak of fluid flow in the receiver tube was lower than the other studied fin shapes by almost 1%.Besides,the hybrid nano-fluid Ag-MgO Syltherm-oil-800 has lower thermal waste in comparison to others by more than 3%.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFF0701202)the National Natural Science Foundation of China(Grant No.11875087)。
文摘Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.
文摘Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant.
基金Project (201012200094) supported by the Freedom Exploration Program of Central South University of ChinaProject (20090461022) supported by the China Postdoctoral Science FoundationProject (2010ZJ05) supported by the Science and Technology supporting Program of Xinjiang Production and Construction Corps in China
文摘A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made that the lateral passive pressure is linear to the corresponding horizontal displacement and the soil behind retaining wall is composed of a set of springs and ideal rigid plasticity body, the general analytical method was proposed to calculate the passive rigid retaining wall pressure based on Coulomb theory. The analytical results show that the resultant forces of the passive earth pressure are equal to those of Coulomb's theory, but the distribution of the passive pressure and the position of the resultant force depend on the passive displacement mode parameter, and the former is a parabolic function of the soil depth. The analytical results are also in good agreement with the experimental ones.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.