The poor contact and side reactions between Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)and lithium(Li)anode cause uneven Li plating and high interfacial impendence,which greatly hinder the practical application of LATP...The poor contact and side reactions between Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)and lithium(Li)anode cause uneven Li plating and high interfacial impendence,which greatly hinder the practical application of LATP in high-energy density solid-state Li metal batteries.In this work,a multifunctional ferroelectric BaTiO_(3)(BTO)/poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)(P[VDF-TrFE-CTFE])composite interlayer(B-TERB)is constructed between LATP and Li metal anode,which not only suppresses the Li dendrite growth,but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude.The B-TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition,and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability.As a result,the Li/LATP@B-TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm^(-2)and 1000 h at 0.5 mA cm^(-2).The solid-state LiFePO_(4)/LATP@B-TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature.This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room-temperature cycling performance.展开更多
用RSM法以MRS培养基为基础对副干酪乳杆菌HD1.7的液体培养基进行优化。首先采用Plackett-Burman试验设计筛选显著因子,确定了影响细菌素产生的主要成分:牛肉膏、葡萄糖、酵母粉;运用最陡爬坡试验逼近最大细菌素产生区域;利用RSM法对培...用RSM法以MRS培养基为基础对副干酪乳杆菌HD1.7的液体培养基进行优化。首先采用Plackett-Burman试验设计筛选显著因子,确定了影响细菌素产生的主要成分:牛肉膏、葡萄糖、酵母粉;运用最陡爬坡试验逼近最大细菌素产生区域;利用RSM法对培养基进行优化。试验结果表明培养基最佳配方为酵母粉0.26%、牛肉膏0.88%、蛋白胨1.5%、葡萄糖2.45%、Mg-SO40.06%、K2HPO40.2%、吐温80 0.1%、MnSO40.005%、NaC l 0%。展开更多
基金Supported by The Foundation of Key Program of Heilongjiang(GB05B401)Outstanding Teacher Funds of Heilongjiang Province,China(1055G034)+1 种基金The Project-sponsored by SRF for ROCS,SEMThe Natural Science Foundation of Heilongjiang Province,China(C200505)~~
基金supported by National Natural Science Foundation of China(No.U2001220)Local Innovative Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)+1 种基金Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center(XMHT20200203006)Shenzhen Technical Plan Project(Nos.RCJC20200714114436091,JCYJ20180508152210821,and JCYJ20180508152135822).
文摘The poor contact and side reactions between Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)and lithium(Li)anode cause uneven Li plating and high interfacial impendence,which greatly hinder the practical application of LATP in high-energy density solid-state Li metal batteries.In this work,a multifunctional ferroelectric BaTiO_(3)(BTO)/poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)(P[VDF-TrFE-CTFE])composite interlayer(B-TERB)is constructed between LATP and Li metal anode,which not only suppresses the Li dendrite growth,but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude.The B-TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition,and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability.As a result,the Li/LATP@B-TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm^(-2)and 1000 h at 0.5 mA cm^(-2).The solid-state LiFePO_(4)/LATP@B-TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature.This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room-temperature cycling performance.
文摘用RSM法以MRS培养基为基础对副干酪乳杆菌HD1.7的液体培养基进行优化。首先采用Plackett-Burman试验设计筛选显著因子,确定了影响细菌素产生的主要成分:牛肉膏、葡萄糖、酵母粉;运用最陡爬坡试验逼近最大细菌素产生区域;利用RSM法对培养基进行优化。试验结果表明培养基最佳配方为酵母粉0.26%、牛肉膏0.88%、蛋白胨1.5%、葡萄糖2.45%、Mg-SO40.06%、K2HPO40.2%、吐温80 0.1%、MnSO40.005%、NaC l 0%。