For two kind of MSebius invariant subspace A^α,d(D) and A^β,2 (D), define the Toeplitz operators Tf^s and Hankel operators Hf^r on A^α,d(D)×A^β,2 (D) with an arbi-trary analytic "symbol function" f ...For two kind of MSebius invariant subspace A^α,d(D) and A^β,2 (D), define the Toeplitz operators Tf^s and Hankel operators Hf^r on A^α,d(D)×A^β,2 (D) with an arbi-trary analytic "symbol function" f on a unit disk, and study their boundedness, compactness and Schatten-von Neumann properties.展开更多
For two kinds of the Moebius invariant subspace A_l^(a,2)(D) and A_l^(-a,2)(D) of L^(a,2)(D), we define big and small Hankel operators H_b^(ll') and h_b^(ll') for the analytic symbol function b(z), and st...For two kinds of the Moebius invariant subspace A_l^(a,2)(D) and A_l^(-a,2)(D) of L^(a,2)(D), we define big and small Hankel operators H_b^(ll') and h_b^(ll') for the analytic symbol function b(z), and study their boundedness, compactness and Schatten-von Neumanu classes S_p-estimates, and hence develope Schatten -von Neumann properties of these op- erators.展开更多
文摘For two kind of MSebius invariant subspace A^α,d(D) and A^β,2 (D), define the Toeplitz operators Tf^s and Hankel operators Hf^r on A^α,d(D)×A^β,2 (D) with an arbi-trary analytic "symbol function" f on a unit disk, and study their boundedness, compactness and Schatten-von Neumann properties.
文摘For two kinds of the Moebius invariant subspace A_l^(a,2)(D) and A_l^(-a,2)(D) of L^(a,2)(D), we define big and small Hankel operators H_b^(ll') and h_b^(ll') for the analytic symbol function b(z), and study their boundedness, compactness and Schatten-von Neumanu classes S_p-estimates, and hence develope Schatten -von Neumann properties of these op- erators.