Objective: To report the management of skin and soft tissue infections in the surgical area of Kara University Hospital in Togo. Material and Methods: This study was conducted retrospectively from January 1, 2021, to ...Objective: To report the management of skin and soft tissue infections in the surgical area of Kara University Hospital in Togo. Material and Methods: This study was conducted retrospectively from January 1, 2021, to December 31, 2022, in the general surgery and orthopedic trauma departments. The study focused on soft tissue infections of the pelvic and thoracic limbs and analyzed epidemiological, clinical, paraclinical, therapeutic, and evolutionary data. Results: We registered 165 patients, comprising 109 men and 56 women.The sex ratio (F/H) were 0.51. The mean age was 45 years with extremes ranging from 23 to 90 years. Farmers (64.8%) followed by housewives (34.0%) were the social strata most affected. The consultation period varied between 1 and 90 days. The pathologies found were necrotizing fasciitis (53.3%), erysipelas (18.2%), infected limb wounds (12.1%), pyomyositis (9.7%), and necrotizing dermo-hypodermitis (1.8%). The main procedures performed were necrosectomy and grafting (62.9%), sample necrosectomy (18.8%), drainage (9.7%), and pelvic limb amputation (1.2%). Follow-up was favorable in 86.7% of cases. The study noted a death rate of 13.3% due to septic shock secondary to a delay in consultation. Conclusion: Skin and soft tissue infections were a common reason for surgical hospitalization at Kara University Hospital, with a high mortality rate due to delayed consultations.展开更多
For first-line non-small-cell lung cancer(NSCLC) therapy,detecting mutation status of the epidermal growth factor receptor(EGFR) gene constitutes a prudent test to identify patients who are most likely to benefit ...For first-line non-small-cell lung cancer(NSCLC) therapy,detecting mutation status of the epidermal growth factor receptor(EGFR) gene constitutes a prudent test to identify patients who are most likely to benefit from EGFR-tyrosine kinase inhibitor(TKI) therapy.Now,the material for detecting EGFR gene mutation status mainly comes from formalin-fixed and paraffin-embedded(FFPE) tissues.DNA extraction from FFPE and the amplification of EGFR gene by polymerase chain reaction(PCR) are two key steps for detecting EGFR gene mutation.We showed a simple method of DNA extraction from FFPE tissues for the effective amplification of EGFR gene.Extracting DNA from the FFPE tissues of NSCLC patients with 1% Triton X-100(pH=10.0) was performed by heating at 95 °C for 30 min.Meanwhile,a commercial kit was used to extract DNA from the same FFPE tissues of NSCLC patients for comparison.DNA extracted products were used as template for amplifying the exons 18,19,20 and 21 of EGFR by PCR for different amplified fragments.Results show that DNA fragment size extracted from FFPE tissues with 1% Triton X was about 250―500 base pairs(bp).However,DNA fragment size extracted from FFPE tissues via commercial kit was about from several hundreds to several thousands bp.The DNA yield extracted from FFPE tissues with 1% Triton X was larger than that via commercial kit.For about 500 bp fragment,four exons of EGFR could not be amplified more efficiently from extracted DNA with 1% Triton X than with commercial kit.However,for about 200 bp fragment.This simple and non-laborious protocol could successfully be used to extract DNA from FFPE tissue for the amplification of EGFR gene by PCR,further screening of EGFR gene mutation and facilitating the molecular analysis of a large number of FFPE tissues from NSCLC patients.展开更多
Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex s...Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex structures and are increasingly recognized as efective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional(2D)systems and ethical concerns.The inherent plasticity of skin organoids allows for their construction into physiological and pathological models,enabling the study of skin development and dynamic changes.This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages.Furthermore,it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques,such as 3D printing and microfuidic devices.The review also summarizes and discusses the diverse applications of skin organoids in developmental biology,disease modelling,regenerative medicine,and personalized medicine,while considering their prospects and limitations.展开更多
Among the commonly used nanofibers production methods,electrospinning has many advantages such as ease of production,possibility of industrialization,nanofibers dimensional control and repeatability.Many parameters af...Among the commonly used nanofibers production methods,electrospinning has many advantages such as ease of production,possibility of industrialization,nanofibers dimensional control and repeatability.Many parameters affect the characteristics of the nanofibers produced by this method,the most important of these parameters being the applied voltage,the concentration of polymer solution,the sample injection rate,the distance between the needle and the collector,and environmental factors too.Pharmaceutical properties of nanofibers are determined by their composition and structure at the nanoscale.Therefore,the ultimate goal of identify nanostructure and nanofiber morphology must be searching for an atom to an atom on a surface and under the reaction conditions.In this paper,honey nanofibers enriched with antibacterial herbal extracts such as the garlic,mint and edible mushroom are produced by method of electrospinning,by reviewing the effective conditions in preparing them,to achieve nanostructures and optimize conditions.The related nanofibers have ability to repair and regenerate damaged skin and bone tissues as an effective drug,which is especially important for biocompatibility and economics.In this research,nanofibers have been investigated by examining cases affecting structure and performance.The hydroalcoholic extracts and nanofibers are identified by device methods such as GC-Mass(gas chromatography-mass spectrometry),FT-IR(Fourier transform infrared spectroscopy),SEM(scanning electron microscopy)and XRD(X-ray diffraction spectroscopy).展开更多
The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge stillpending in tissue engineering. The loss of hair follic...The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge stillpending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide threedimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field.展开更多
Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments o...Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.展开更多
To characterize the degree of similarity inherent to parameters of the optically uniaxial birefringent protein-fibril networks of biological tissues,a new parameter-complex degree of mutual anisotropy-has been offered...To characterize the degree of similarity inherent to parameters of the optically uniaxial birefringent protein-fibril networks of biological tissues,a new parameter-complex degree of mutual anisotropy-has been offered.The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of biological tissues has been developed.It has been shown that statistical approach to the analysis of complex degree of mutual anisotropy distributions for biological tissues in various morphological and physiological states and for different optical thicknesses appears to be more sensitive and efficient in differentiation of physiological state,as compared to investigations of complex degree of mutual polarization in the corresponding laser images.展开更多
Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, ...Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, biological and neural responses of the affected tissue: a favorable interaction results in a procedure with relatively little pain and no lasting side effects. Currently, even though each behavioral facet is to a certain extent established and understood, none exists to date in the interdisciplinary area. A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin, involving bioheat transfer, biomechanics and physiology. A comprehensive literature review pertinent to the subject is presented in this paper, covering four subject areas: (a) skin structure, (b) skin bioheat transfer and thermal damage, (c) skin biomechanics, and (d) skin biothermomechanics. The major problems, issues, and topics for further studies are also outlined. This review finds that significant advances in each of these aspects have been achieved in recent years. Although focus is placed upon the biothermomechanical behavior of skin tissue, the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.展开更多
In a general wound healing process, foreign bodies and tissue detritus have to be broken down and then a new tissue is produced. However, the new tissue formation sometimes fails to proceed under the impaired conditio...In a general wound healing process, foreign bodies and tissue detritus have to be broken down and then a new tissue is produced. However, the new tissue formation sometimes fails to proceed under the impaired conditions such as burn injury and intractable skin ulcer. A major obstruction to wound healing is infection. Another obstruction to wound healing is deficiency of growth factors. The endogenous levels of growth factors are reduced in some chronic wounds. To improve these wound conditions, researchers have been trying to create several types of artificial skins. The tissue-engineered products include three prime constituents, i.e., cells, growth factors, and materials. In this review, the practical design of tissue-engineered products for skin regenerative medicine is introduced. The first design makes it possible to release silver sulfadiazine (AgSD) from a wound dressing. The second design makes it possible to release Epidermal Growth Factor (EGF) from a wound dressing or a skin care product composed of hyaluronic acid spongy sheet containing bioactive ingredients. The third design makes it possible to release several types of growth factors from allogeneic fibroblasts within cultured dermal substitute. This tissue-engineered product is prepared by seeding allogeneic fibroblasts into a collagen and hyaluronic acid spongy sheet. Although allogeneic cells are rejected gradually in immune system, they are able to release some types of growth factors, thereby regenerating a damaged tissue. The clinical study demonstrates that these tissue-engineered products are promising for the treatment of burn injury and intractable skin ulcer.展开更多
Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissu...Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future.Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initiate cell cultures in vitro, grow them on scaffolds in situ and transplant the composite into a recipient in vivo. From the beginning, scaffolds have been necessary in tissue engineering applications. Regardless, the latest technology has redirected established approaches by omitting scaffolds. Currently, scientists from diverse research institutes are engineering skin without scaffolds. Due to their advantageous properties, stem cells have robustly transformed the tissue engineering field as part of an engineered bilayered skin substitute that will later be discussed in detail. Additionally, utilizing biomaterials or skin replacement products in skin tissue engineering as strategy to successfully direct cell proliferation and differentiation as well as to optimize the safety of handling during grafting is beneficial. This approach has also led to the cells' application in developing the novel skin substitute that will be briefly explained in this review.展开更多
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characte...BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.展开更多
During wound healing, the metabolic activity associated with each phase must occur in the proper sequence, at a specific time, and continue for a specific duration at an optimal intensity. Any disturbance in appropria...During wound healing, the metabolic activity associated with each phase must occur in the proper sequence, at a specific time, and continue for a specific duration at an optimal intensity. Any disturbance in appropriate thermal environment may complicate the wound healing process and may give rise to wound infection. In the presented paper a transient state two-dimensional mathematical model has been developed to analyse thermal variations in skin and subcutaneous tissue (SST) region of human limb. Due to circular shape of human limb, model has been developed in polar coordinates. The domain of the study consists of two types of tissues: abnormal tissues and normal tissues. The post surgery peripheral tissue of human limb during healing time is considered as abnormal tissues. The effect of variable density of blood vessels in dermal layer of both tissues on the physical and physiological parameters is incorporated in the model. The effect of healing on physiological parameters of abnormal tissue is incorporated by considering the physiological parameters to be function of time “t”. The effect of different climatic conditions is considered in the model. Taking into account the variable core temperature due to anatomy of arteries and variable physiological parameters in dermal layer of peripheral region, the well known Pennes’ bio heat equation is used to analyse the time-dependent temperature distribution of both normal and abnormal tissues. Comparison between temperature profiles of both normal and abnormal tissue has been done using finite element approach with bilinear shape functions in polar coordinates. A computer program in MATLAB has been developed to simulate the results.展开更多
Background: Differential diagnosis of follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA) is often difficult since presence or absence of capsular/vascular invasion can not be determined by preope...Background: Differential diagnosis of follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA) is often difficult since presence or absence of capsular/vascular invasion can not be determined by preoperative fine needle aspiration cytology, and may not be judged unanimously on permanent sections even among experienced pathologists. Determination of molecular-genetic factors such as trefoil factor 3 (TFF3) mRNA in the follicular thyroid tumors may be useful aid to improve the accuracy of diagnosis, though it is considered to be unstable and relatively low concentrated genetic substance. Purpose of our study is to investigate expression level of TFF3 mRNA of thyroid follicular tumors using formalin-fixed, paraffin-embedded (FFPE) tissue. Methods: Study population included FFPE sections from 19 FTC cases, 20 FTA cases, 11 adenomatous goiter (G) cases and 12 samples of normal thyroid tissue (N) adjacent to thyroid tumors. RNeasy FFPE kit was used for extraction of total RNA. Purification and concentration values were determined by spectrophotometer. Extracted RNA was used for cDNA synthesis in reverse transcription. Synthesized cDNA subsequently proceeded for relative quantification of TFF3 mRNA by RT-qPCR using TFF3 primers. Glyceroldehyde-3-phosphate dehydrogenase (GAPDH) and hypoxanthin phosphorobosyltransferase1 (HPRT1) were used as control genes. The mean and standard deviation of TFF3 mRNA expression level were analyzed by software Multiplate RQ. Results: Extraction by the FFPE kit yielded high concentration of RNA in all cases. Purification values were 1.8 in average. Concentration values were significantly higher in FTC and FTA relative to G and N tissues, possibly due to high density of thyrocytes in the samples. Relative quantification of TFF3 mRNA expression level showed broad ranges both in FTC and FTA, while the analyses in G and N tissues indicated narrow ranges. Conclusion: FFPE tissues from thyroid follicular tumors can be used for measurement of unstable and low concentrated genetic substances such as TFF3 mRNA. Its diagnostic value yet remains to be determined.展开更多
Cancers, malignant melanoma and sarcomas of the skin represent the most common group of malignancies in humans. The main treatment method of almost all skin cancers and subcutaneous tissue tumours is surgery, which co...Cancers, malignant melanoma and sarcomas of the skin represent the most common group of malignancies in humans. The main treatment method of almost all skin cancers and subcutaneous tissue tumours is surgery, which consists of complete removal of a neoplastic lesion, with an adequate margin of healthy tissue. Radiotherapy plays an adjuvant role in this process, meaning complementing of the surgical procedure. This study compared four methods of irradiation treatment of cancer located in the skin or in subcutaneous tissues: contact brachytherapy, conventional orthovoltage therapy, electron beam conformal teleradiotherapy and IMRT dynamically shaped photonic beams conformal teleradiotherapy. In order to compare the methods and techniques of surface radiotherapy, following specific objectives were formulated. At the beginning in order to compare the scopes of the absorbed doses at different tissue depths, an analysis of parameters describing particular beams or radiation source has been performed—the curves for the absorbed-dose depth drop-offs. Doses distribution in tissue-like phantoms stimulating homogeneous cuboidal tissue block has been determined. A quality comparison of dose distribution in 2D and 3D treatment planning system for contact brachytherapy application has been made. The dose distribution for electron beam in the system has been determined. Conformal plannings for electron beam treatment, contact brachytherapy applicator treatment and 4 photon beams treatment optimized in IMRT technology have been performed. Dose distribution has been performed for the irradiated female patient within the well chest—the target included the recurrence area in the post-operative scar. The radiation therapy with X-rays has actually been completely eliminated from skin cancer and subcutaneous tissue radiotherapy by the electrons generated in linear accelerators, contact brachytherapy HDR and by high-energy photons used in conformal techniques, ex. IMRT. It is because the residual dose beyond the target is the highest for single X-ray beam. Although in brachytherapy HDR a rapid dose drop-off is observed, 5 cm from its normalization level for the target the residual radiation remains at the level of several percent. So, both X-rays beam radiation and brachytherapy in skin cancer treatment is connected with the administration of the dose with a high gradient in the health tissues. The dose distribution for photon conformal techniques IMRT or for electron radiation looks different. There with the dose normalization at the level of 90% or 85% we deal with the dose layer, the division does not exceed 15% of heterogeneity.展开更多
文摘Objective: To report the management of skin and soft tissue infections in the surgical area of Kara University Hospital in Togo. Material and Methods: This study was conducted retrospectively from January 1, 2021, to December 31, 2022, in the general surgery and orthopedic trauma departments. The study focused on soft tissue infections of the pelvic and thoracic limbs and analyzed epidemiological, clinical, paraclinical, therapeutic, and evolutionary data. Results: We registered 165 patients, comprising 109 men and 56 women.The sex ratio (F/H) were 0.51. The mean age was 45 years with extremes ranging from 23 to 90 years. Farmers (64.8%) followed by housewives (34.0%) were the social strata most affected. The consultation period varied between 1 and 90 days. The pathologies found were necrotizing fasciitis (53.3%), erysipelas (18.2%), infected limb wounds (12.1%), pyomyositis (9.7%), and necrotizing dermo-hypodermitis (1.8%). The main procedures performed were necrosectomy and grafting (62.9%), sample necrosectomy (18.8%), drainage (9.7%), and pelvic limb amputation (1.2%). Follow-up was favorable in 86.7% of cases. The study noted a death rate of 13.3% due to septic shock secondary to a delay in consultation. Conclusion: Skin and soft tissue infections were a common reason for surgical hospitalization at Kara University Hospital, with a high mortality rate due to delayed consultations.
基金Supported by the Jilin Science & Technology Development Plan,China(No.201201060)the Scientific Research Foundation of Jilin Province,China(No.20100942)+1 种基金the Fund of Developing and Reforming Community of Jilin Province,China(No.2010-1928)the Health Scientific Research Foundation of Jilin Province,China(Nos.2009z081,2010Z083)
文摘For first-line non-small-cell lung cancer(NSCLC) therapy,detecting mutation status of the epidermal growth factor receptor(EGFR) gene constitutes a prudent test to identify patients who are most likely to benefit from EGFR-tyrosine kinase inhibitor(TKI) therapy.Now,the material for detecting EGFR gene mutation status mainly comes from formalin-fixed and paraffin-embedded(FFPE) tissues.DNA extraction from FFPE and the amplification of EGFR gene by polymerase chain reaction(PCR) are two key steps for detecting EGFR gene mutation.We showed a simple method of DNA extraction from FFPE tissues for the effective amplification of EGFR gene.Extracting DNA from the FFPE tissues of NSCLC patients with 1% Triton X-100(pH=10.0) was performed by heating at 95 °C for 30 min.Meanwhile,a commercial kit was used to extract DNA from the same FFPE tissues of NSCLC patients for comparison.DNA extracted products were used as template for amplifying the exons 18,19,20 and 21 of EGFR by PCR for different amplified fragments.Results show that DNA fragment size extracted from FFPE tissues with 1% Triton X was about 250―500 base pairs(bp).However,DNA fragment size extracted from FFPE tissues via commercial kit was about from several hundreds to several thousands bp.The DNA yield extracted from FFPE tissues with 1% Triton X was larger than that via commercial kit.For about 500 bp fragment,four exons of EGFR could not be amplified more efficiently from extracted DNA with 1% Triton X than with commercial kit.However,for about 200 bp fragment.This simple and non-laborious protocol could successfully be used to extract DNA from FFPE tissue for the amplification of EGFR gene by PCR,further screening of EGFR gene mutation and facilitating the molecular analysis of a large number of FFPE tissues from NSCLC patients.
基金suppor ted by the National Key Research and Development Program of China(2022YFA1104800)the Beijing Nova Program(20220484100)+6 种基金the National Natural Science Foundation of China(81873939)the Open Research Fund of State Key Laboratory of Cardiovascular Disease,Fuwai Hospital(2022KF-04)the Clinical Medicine Plus X-Young Scholars Projec t,Pek ing Universit y(PKU2022LCXQ003)the Emerging Engineering InterdisciplinaryYoung Scholars Project,Peking University,the Fundamental Research Funds for the Central Universities(PKU2023XGK011)the Open Research Fund of State Key Laboratory of Digital Medical Engineering,Southeast University(2023K-01)the Open Research Fund of Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease,Beijing,China(DXWL2023-01)the Science and Technology Bureau Foundation Application Project of Changzhou(CJ20220118)。
文摘Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex structures and are increasingly recognized as efective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional(2D)systems and ethical concerns.The inherent plasticity of skin organoids allows for their construction into physiological and pathological models,enabling the study of skin development and dynamic changes.This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages.Furthermore,it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques,such as 3D printing and microfuidic devices.The review also summarizes and discusses the diverse applications of skin organoids in developmental biology,disease modelling,regenerative medicine,and personalized medicine,while considering their prospects and limitations.
文摘Among the commonly used nanofibers production methods,electrospinning has many advantages such as ease of production,possibility of industrialization,nanofibers dimensional control and repeatability.Many parameters affect the characteristics of the nanofibers produced by this method,the most important of these parameters being the applied voltage,the concentration of polymer solution,the sample injection rate,the distance between the needle and the collector,and environmental factors too.Pharmaceutical properties of nanofibers are determined by their composition and structure at the nanoscale.Therefore,the ultimate goal of identify nanostructure and nanofiber morphology must be searching for an atom to an atom on a surface and under the reaction conditions.In this paper,honey nanofibers enriched with antibacterial herbal extracts such as the garlic,mint and edible mushroom are produced by method of electrospinning,by reviewing the effective conditions in preparing them,to achieve nanostructures and optimize conditions.The related nanofibers have ability to repair and regenerate damaged skin and bone tissues as an effective drug,which is especially important for biocompatibility and economics.In this research,nanofibers have been investigated by examining cases affecting structure and performance.The hydroalcoholic extracts and nanofibers are identified by device methods such as GC-Mass(gas chromatography-mass spectrometry),FT-IR(Fourier transform infrared spectroscopy),SEM(scanning electron microscopy)and XRD(X-ray diffraction spectroscopy).
基金Supported by the Agencia Nacional de Producción Científica y Tecnológica(ANPCyT),No.ANR BIO 0032/10
文摘The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge stillpending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide threedimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This field is attractive not only to academic researchers but also to the companies that own almost half of the patents in this field.
基金This work was supported by the Overseas Research Studentship(ORS)Overseas Trust Scholarship of Cambridge Uni-versity,the National Natural Science Foundation of China(10328203,10572111,10632060)+1 种基金the National 111 Project of China(B06024)the National Basic Research Program of China(2006CB601202)
文摘Skin thermal damage or skin burns are the most commonly encountered type of trauma in civilian and military communities. Besides, advances in laser, microwave and similar technologies have led to recent developments of thermal treatments for disease and damage involving skin tissue, where the objective is to induce thermal damage precisely within targeted tissue structures but without affecting the surrounding, healthy tissue. Further, extended pain sensation induced by thermal damage has also brought great problem for burn patients. Thus, it is of great importance to quantify the thermal damage in skin tissue. In this paper, the available models and experimental methods for quantification of thermal damage in skin tissue are discussed.
文摘To characterize the degree of similarity inherent to parameters of the optically uniaxial birefringent protein-fibril networks of biological tissues,a new parameter-complex degree of mutual anisotropy-has been offered.The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of biological tissues has been developed.It has been shown that statistical approach to the analysis of complex degree of mutual anisotropy distributions for biological tissues in various morphological and physiological states and for different optical thicknesses appears to be more sensitive and efficient in differentiation of physiological state,as compared to investigations of complex degree of mutual polarization in the corresponding laser images.
基金the Overseas Research Studentship (ORS)Overseas Trust Scholarship of Cambridge Universitythe National Natural Science Foundation of China (10572111,10632060)+1 种基金National 111 Project of China (B06024)the National Basic Research Program of China (2006CB601202)
文摘Advances in laser, microwave and similar technologies have led to recent developments of thermal treatments involving skin tissue. The effectiveness of these treatments is governed by the coupled thermal, mechanical, biological and neural responses of the affected tissue: a favorable interaction results in a procedure with relatively little pain and no lasting side effects. Currently, even though each behavioral facet is to a certain extent established and understood, none exists to date in the interdisciplinary area. A highly interdisciplinary approach is required for studying the biothermomechanical behavior of skin, involving bioheat transfer, biomechanics and physiology. A comprehensive literature review pertinent to the subject is presented in this paper, covering four subject areas: (a) skin structure, (b) skin bioheat transfer and thermal damage, (c) skin biomechanics, and (d) skin biothermomechanics. The major problems, issues, and topics for further studies are also outlined. This review finds that significant advances in each of these aspects have been achieved in recent years. Although focus is placed upon the biothermomechanical behavior of skin tissue, the fundamental concepts and methodologies reviewed in this paper may also be applicable for studying other soft tissues.
文摘In a general wound healing process, foreign bodies and tissue detritus have to be broken down and then a new tissue is produced. However, the new tissue formation sometimes fails to proceed under the impaired conditions such as burn injury and intractable skin ulcer. A major obstruction to wound healing is infection. Another obstruction to wound healing is deficiency of growth factors. The endogenous levels of growth factors are reduced in some chronic wounds. To improve these wound conditions, researchers have been trying to create several types of artificial skins. The tissue-engineered products include three prime constituents, i.e., cells, growth factors, and materials. In this review, the practical design of tissue-engineered products for skin regenerative medicine is introduced. The first design makes it possible to release silver sulfadiazine (AgSD) from a wound dressing. The second design makes it possible to release Epidermal Growth Factor (EGF) from a wound dressing or a skin care product composed of hyaluronic acid spongy sheet containing bioactive ingredients. The third design makes it possible to release several types of growth factors from allogeneic fibroblasts within cultured dermal substitute. This tissue-engineered product is prepared by seeding allogeneic fibroblasts into a collagen and hyaluronic acid spongy sheet. Although allogeneic cells are rejected gradually in immune system, they are able to release some types of growth factors, thereby regenerating a damaged tissue. The clinical study demonstrates that these tissue-engineered products are promising for the treatment of burn injury and intractable skin ulcer.
基金Supported by Postgraduate Research Grant Scheme of Universiti Sains Malaysia,No.1001/PPSP/8144012Techno Fund grant from the Ministry of Science,Technology and Innovation of Malaysia,No.304/PPSP/6150101
文摘Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future.Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initiate cell cultures in vitro, grow them on scaffolds in situ and transplant the composite into a recipient in vivo. From the beginning, scaffolds have been necessary in tissue engineering applications. Regardless, the latest technology has redirected established approaches by omitting scaffolds. Currently, scientists from diverse research institutes are engineering skin without scaffolds. Due to their advantageous properties, stem cells have robustly transformed the tissue engineering field as part of an engineered bilayered skin substitute that will later be discussed in detail. Additionally, utilizing biomaterials or skin replacement products in skin tissue engineering as strategy to successfully direct cell proliferation and differentiation as well as to optimize the safety of handling during grafting is beneficial. This approach has also led to the cells' application in developing the novel skin substitute that will be briefly explained in this review.
基金the National Science Center,No.N407121940the Wroclaw Centre of Biotechnology,the Leading National Research Centre(KNOW)program for the years 2014-2018
文摘BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
文摘During wound healing, the metabolic activity associated with each phase must occur in the proper sequence, at a specific time, and continue for a specific duration at an optimal intensity. Any disturbance in appropriate thermal environment may complicate the wound healing process and may give rise to wound infection. In the presented paper a transient state two-dimensional mathematical model has been developed to analyse thermal variations in skin and subcutaneous tissue (SST) region of human limb. Due to circular shape of human limb, model has been developed in polar coordinates. The domain of the study consists of two types of tissues: abnormal tissues and normal tissues. The post surgery peripheral tissue of human limb during healing time is considered as abnormal tissues. The effect of variable density of blood vessels in dermal layer of both tissues on the physical and physiological parameters is incorporated in the model. The effect of healing on physiological parameters of abnormal tissue is incorporated by considering the physiological parameters to be function of time “t”. The effect of different climatic conditions is considered in the model. Taking into account the variable core temperature due to anatomy of arteries and variable physiological parameters in dermal layer of peripheral region, the well known Pennes’ bio heat equation is used to analyse the time-dependent temperature distribution of both normal and abnormal tissues. Comparison between temperature profiles of both normal and abnormal tissue has been done using finite element approach with bilinear shape functions in polar coordinates. A computer program in MATLAB has been developed to simulate the results.
文摘Background: Differential diagnosis of follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA) is often difficult since presence or absence of capsular/vascular invasion can not be determined by preoperative fine needle aspiration cytology, and may not be judged unanimously on permanent sections even among experienced pathologists. Determination of molecular-genetic factors such as trefoil factor 3 (TFF3) mRNA in the follicular thyroid tumors may be useful aid to improve the accuracy of diagnosis, though it is considered to be unstable and relatively low concentrated genetic substance. Purpose of our study is to investigate expression level of TFF3 mRNA of thyroid follicular tumors using formalin-fixed, paraffin-embedded (FFPE) tissue. Methods: Study population included FFPE sections from 19 FTC cases, 20 FTA cases, 11 adenomatous goiter (G) cases and 12 samples of normal thyroid tissue (N) adjacent to thyroid tumors. RNeasy FFPE kit was used for extraction of total RNA. Purification and concentration values were determined by spectrophotometer. Extracted RNA was used for cDNA synthesis in reverse transcription. Synthesized cDNA subsequently proceeded for relative quantification of TFF3 mRNA by RT-qPCR using TFF3 primers. Glyceroldehyde-3-phosphate dehydrogenase (GAPDH) and hypoxanthin phosphorobosyltransferase1 (HPRT1) were used as control genes. The mean and standard deviation of TFF3 mRNA expression level were analyzed by software Multiplate RQ. Results: Extraction by the FFPE kit yielded high concentration of RNA in all cases. Purification values were 1.8 in average. Concentration values were significantly higher in FTC and FTA relative to G and N tissues, possibly due to high density of thyrocytes in the samples. Relative quantification of TFF3 mRNA expression level showed broad ranges both in FTC and FTA, while the analyses in G and N tissues indicated narrow ranges. Conclusion: FFPE tissues from thyroid follicular tumors can be used for measurement of unstable and low concentrated genetic substances such as TFF3 mRNA. Its diagnostic value yet remains to be determined.
文摘Cancers, malignant melanoma and sarcomas of the skin represent the most common group of malignancies in humans. The main treatment method of almost all skin cancers and subcutaneous tissue tumours is surgery, which consists of complete removal of a neoplastic lesion, with an adequate margin of healthy tissue. Radiotherapy plays an adjuvant role in this process, meaning complementing of the surgical procedure. This study compared four methods of irradiation treatment of cancer located in the skin or in subcutaneous tissues: contact brachytherapy, conventional orthovoltage therapy, electron beam conformal teleradiotherapy and IMRT dynamically shaped photonic beams conformal teleradiotherapy. In order to compare the methods and techniques of surface radiotherapy, following specific objectives were formulated. At the beginning in order to compare the scopes of the absorbed doses at different tissue depths, an analysis of parameters describing particular beams or radiation source has been performed—the curves for the absorbed-dose depth drop-offs. Doses distribution in tissue-like phantoms stimulating homogeneous cuboidal tissue block has been determined. A quality comparison of dose distribution in 2D and 3D treatment planning system for contact brachytherapy application has been made. The dose distribution for electron beam in the system has been determined. Conformal plannings for electron beam treatment, contact brachytherapy applicator treatment and 4 photon beams treatment optimized in IMRT technology have been performed. Dose distribution has been performed for the irradiated female patient within the well chest—the target included the recurrence area in the post-operative scar. The radiation therapy with X-rays has actually been completely eliminated from skin cancer and subcutaneous tissue radiotherapy by the electrons generated in linear accelerators, contact brachytherapy HDR and by high-energy photons used in conformal techniques, ex. IMRT. It is because the residual dose beyond the target is the highest for single X-ray beam. Although in brachytherapy HDR a rapid dose drop-off is observed, 5 cm from its normalization level for the target the residual radiation remains at the level of several percent. So, both X-rays beam radiation and brachytherapy in skin cancer treatment is connected with the administration of the dose with a high gradient in the health tissues. The dose distribution for photon conformal techniques IMRT or for electron radiation looks different. There with the dose normalization at the level of 90% or 85% we deal with the dose layer, the division does not exceed 15% of heterogeneity.