Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, patte...Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, pattern recognition, machine learning, image processing, computer vision and etc. K-means is a popular clustering algorithm which partitions instances into a fixed number clusters in an iterative fashion. Although k-means is considered to be a poor clustering algorithm in terms of result quality, due to its simplicity, speed on practical applications, and iterative nature it is selected as one of the top 10 algorithms in data mining [1]. Parallelization of k-means is also studied during the last 2 decades. Most of these work concentrate on shared-nothing architectures. With the advent of current technological advances on GPU technology, implementation of the k-means algorithm on shared memory architectures recently start to attract some attention. However, to the best of our knowledge, no in-depth analysis on the performance of k-means on shared memory multiprocessors is done in the literature. In this work, our aim is to fill this gap by providing theoretical analysis on the performance of k-means algorithm and presenting extensive tests on a shared memory architecture.展开更多
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并...针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。展开更多
文摘Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, pattern recognition, machine learning, image processing, computer vision and etc. K-means is a popular clustering algorithm which partitions instances into a fixed number clusters in an iterative fashion. Although k-means is considered to be a poor clustering algorithm in terms of result quality, due to its simplicity, speed on practical applications, and iterative nature it is selected as one of the top 10 algorithms in data mining [1]. Parallelization of k-means is also studied during the last 2 decades. Most of these work concentrate on shared-nothing architectures. With the advent of current technological advances on GPU technology, implementation of the k-means algorithm on shared memory architectures recently start to attract some attention. However, to the best of our knowledge, no in-depth analysis on the performance of k-means on shared memory multiprocessors is done in the literature. In this work, our aim is to fill this gap by providing theoretical analysis on the performance of k-means algorithm and presenting extensive tests on a shared memory architecture.
文摘针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。