【目的】系统研究棉秆的化学成分,为其深入开发利用奠定基础。【方法】采用超高效液相色谱-四极杆-静电场轨道阱高分辨质谱(ultra-high-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution ma...【目的】系统研究棉秆的化学成分,为其深入开发利用奠定基础。【方法】采用超高效液相色谱-四极杆-静电场轨道阱高分辨质谱(ultra-high-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry,UHPLC-Q-Exactive orbitrap MS),色谱柱为Thermo Scientific Hypersil GOLD^(TM)aQ(100 mm×2.1 mm,1.9μm),流动相为0.1%甲酸水溶液(A)-乙腈(B),流速为0.3 m L·min^(-1),柱温为40℃,进样量为2μL;质谱采用电喷雾离子源,在正、负离子模式下采用一级母离子全扫描和数据依赖性前三强二级子离子扫描并结合平行反应监测(parallel reaction monitoring,PRM)模式采集数据。【结果】在棉秆中共鉴定了102种化合物,包括有机酸类化合物48种、黄酮及其苷类化合物13种、萜类化合物10种、核苷酸类化合物8种、氨基酸类化合物8种、香豆素类化合物3种、生物碱类化合物2种、其他化合物10种。其中,92种为首次在棉秆中发现。【结论】建立的UHPLC-Q-Exactive orbitrap MS结合PRM方法操作简便,灵敏度高,分析速度快,鉴定了棉秆中102种化合物,首次鉴定了92种,为棉秆的深入开发利用奠定基础。展开更多
Organic matter in the environment is involved in many biogeochemical processes,including the mobilization of geogenic trace elements,such as arsenic,into groundwater.In this paper we present the use of fluorescence sp...Organic matter in the environment is involved in many biogeochemical processes,including the mobilization of geogenic trace elements,such as arsenic,into groundwater.In this paper we present the use of fluorescence spectroscopy to characterize the dissolved organic matter (DOM) pool in heavily arsenicaffected groundwaters in Kandal Province,Cambodia.The fluorescence DOM (fDOM) characteristics between contrasting field areas of differing dominant lithologies were compared and linked to other hydrogeochemical parameters,including arsenic and dissolved methane as well as selected sedimentary characteristics.Absorbance-corrected fluorescence indices were used to characterize depth profiles and compare field areas.Groundwater fDOM was generally dominated by terrestrial humic and fulvic-like components,with relatively small contributions from microbially-derived,tryptophan-like components.Groundwater fDOM from sand-dominated sequences typically contained lower tryptophan-like,lower fulvic-like and lower humic-like components,was less bioavailable,and had higher humification index than clay-dominated sequences.Methane concentrations were strongly correlated with fDOM bioavailability as well as with tryptophan-like components,suggesting that groundwater methane in these arsenic-prone aquifers is likely of biogenic origin.A comparison of fDOM tracers with sedimentary OM tracers is consistent with the hypothesis that external,surface-derived contributions to the aqueous DOM pool are an important control on groundwater hydrogeochemistry.展开更多
Dissolved organic matter (DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloid...Dissolved organic matter (DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloidal organic matter (COM; 10 kDa-0.22 pm) retentate, low molecular weight (LMW) DOM (〈10 kDa) permeate, and bulk samples were analyzed using absorption spectroscopy and three-dimensional fluorescence excitation-emission-matrix spectroscopy. The UV-visible spectra of COM were very similar to those obtained for permeate and bulk samples, decreasing monotonically with increasing wavelength. Most of the chromophoric DOM (CDOM, expressed as the absorption coefficient a355) occurred in the LMW fraction, while the percentage of CDOM in the colloidal fraction was substantially higher in the freshwater endmembet (13.4% of the total) than in the seawater endmember (6.8%). The bulk CDOM showed a conservative mixing behavior in the estuary, while there was removal of the COM fraction and a concurrent addition of the permeate fraction in the mid-salinity sample, implying that part of the colloidal CDOM was transformed into LMW CDOM. Two humic-like components (CI: 〈250, 325/402 nm; and C2: 265, 360/458 nm) and one protein-like component (C3:275/334 nm) were identified using parallel factor analysis. The contributions of the C1, C2, and C3 components of the COM fraction to the bulk sample were 2.5%-8.7%, 4.8%-12.6%, and 7.4%-14.7%, respectively, revealing that fluorescent DOM occurred mainly in the LMW fraction in the Jiulong River Estuary. The C1 and C2 components in the retentate and permeate samples showed conservative mixing behavior, but the intensity ratio of C2/C1 was higher in the retentate than in the permeate fractions for all salinity samples, showing that the humic component was more enriched in the COM than the fulvic component. The intensity ratio of C3/(C 1 +C2) was much higher in the retentate than in the permeate fraction for mid-salinity and seawater samples, revealing that the protein-like component was relatively more enriched in COM than the humic-like component. The contribution of the protein-like component (C3) to the total fluorescence in the retentate increased from 14% in the freshwater endmember to 72% for the seawater endmember samples, clearly indicating the variation of dominance by the humic-like component compared to the protein-like component during the estuarine mixing process of COM.展开更多
基金funded by a NERC Standard Research Grant (NE/J023833/1)to DAP, BvD and Christopher Ballentine(now at University of Oxford)support from the Leverhulme Trust(ECF2015-657) to LAR+1 种基金a NERC PhD studentship(NE/L501591/1)to DMa NERC Collaborative Awards in Science and Engineering PhD studentship (NE/501736/1)to LC.
文摘Organic matter in the environment is involved in many biogeochemical processes,including the mobilization of geogenic trace elements,such as arsenic,into groundwater.In this paper we present the use of fluorescence spectroscopy to characterize the dissolved organic matter (DOM) pool in heavily arsenicaffected groundwaters in Kandal Province,Cambodia.The fluorescence DOM (fDOM) characteristics between contrasting field areas of differing dominant lithologies were compared and linked to other hydrogeochemical parameters,including arsenic and dissolved methane as well as selected sedimentary characteristics.Absorbance-corrected fluorescence indices were used to characterize depth profiles and compare field areas.Groundwater fDOM was generally dominated by terrestrial humic and fulvic-like components,with relatively small contributions from microbially-derived,tryptophan-like components.Groundwater fDOM from sand-dominated sequences typically contained lower tryptophan-like,lower fulvic-like and lower humic-like components,was less bioavailable,and had higher humification index than clay-dominated sequences.Methane concentrations were strongly correlated with fDOM bioavailability as well as with tryptophan-like components,suggesting that groundwater methane in these arsenic-prone aquifers is likely of biogenic origin.A comparison of fDOM tracers with sedimentary OM tracers is consistent with the hypothesis that external,surface-derived contributions to the aqueous DOM pool are an important control on groundwater hydrogeochemistry.
基金The National Natural Science Foundation of China under contract No.41276064the Chinese Scholarship Council Program and the Program for New Century Excellent Talents(NCET)to Weidong Guothe Fundamental Research Funds for the Central Universities under contract No.201112G011
文摘Dissolved organic matter (DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloidal organic matter (COM; 10 kDa-0.22 pm) retentate, low molecular weight (LMW) DOM (〈10 kDa) permeate, and bulk samples were analyzed using absorption spectroscopy and three-dimensional fluorescence excitation-emission-matrix spectroscopy. The UV-visible spectra of COM were very similar to those obtained for permeate and bulk samples, decreasing monotonically with increasing wavelength. Most of the chromophoric DOM (CDOM, expressed as the absorption coefficient a355) occurred in the LMW fraction, while the percentage of CDOM in the colloidal fraction was substantially higher in the freshwater endmembet (13.4% of the total) than in the seawater endmember (6.8%). The bulk CDOM showed a conservative mixing behavior in the estuary, while there was removal of the COM fraction and a concurrent addition of the permeate fraction in the mid-salinity sample, implying that part of the colloidal CDOM was transformed into LMW CDOM. Two humic-like components (CI: 〈250, 325/402 nm; and C2: 265, 360/458 nm) and one protein-like component (C3:275/334 nm) were identified using parallel factor analysis. The contributions of the C1, C2, and C3 components of the COM fraction to the bulk sample were 2.5%-8.7%, 4.8%-12.6%, and 7.4%-14.7%, respectively, revealing that fluorescent DOM occurred mainly in the LMW fraction in the Jiulong River Estuary. The C1 and C2 components in the retentate and permeate samples showed conservative mixing behavior, but the intensity ratio of C2/C1 was higher in the retentate than in the permeate fractions for all salinity samples, showing that the humic component was more enriched in the COM than the fulvic component. The intensity ratio of C3/(C 1 +C2) was much higher in the retentate than in the permeate fraction for mid-salinity and seawater samples, revealing that the protein-like component was relatively more enriched in COM than the humic-like component. The contribution of the protein-like component (C3) to the total fluorescence in the retentate increased from 14% in the freshwater endmember to 72% for the seawater endmember samples, clearly indicating the variation of dominance by the humic-like component compared to the protein-like component during the estuarine mixing process of COM.