期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DPGL:The Direct3D9-based Parallel Graphics Library for Multi-display Environment 被引量:1
1
作者 Zhen Liu Jiao-Ying Shi 《International Journal of Automation and computing》 EI 2007年第1期30-37,共8页
The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropr... The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture, we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail, including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer. 展开更多
关键词 Direct3D9-based parallel graphics library parallel rendering virtual environment PC clusters.
下载PDF
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
2
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(GA) mining perfor-mance
下载PDF
The inversion of density structure by graphic processing unit(GPU) and identification of igneous rocks in Xisha area 被引量:1
3
作者 Lei Yu Jian Zhang +2 位作者 Wei Lin Rongqiang Wei Shiguo Wu 《Earthquake Science》 2014年第1期117-125,共9页
Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the ig... Organic reefs, the targets of deep-water petro- leum exploration, developed widely in Xisha area. However, there are concealed igneous rocks undersea, to which organic rocks have nearly equal wave impedance. So the igneous rocks have become interference for future explo- ration by having similar seismic reflection characteristics. Yet, the density and magnetism of organic reefs are very different from igneous rocks. It has obvious advantages to identify organic reefs and igneous rocks by gravity and magnetic data. At first, frequency decomposition was applied to the free-air gravity anomaly in Xisha area to obtain the 2D subdivision of the gravity anomaly and magnetic anomaly in the vertical direction. Thus, the dis- tribution of igneous rocks in the horizontal direction can be acquired according to high-frequency field, low-frequency field, and its physical properties. Then, 3D forward model- ing of gravitational field was carried out to establish the density model of this area by reference to physical properties of rocks based on former researches. Furthermore, 3D inversion of gravity anomaly by genetic algorithm method of the graphic processing unit (GPU) parallel processing in Xisha target area was applied, and 3D density structure of this area was obtained. By this way, we can confine the igneous rocks to the certain depth according to the density of the igneous rocks. The frequency decomposition and 3D inversion of gravity anomaly by genetic algorithm method of the GPU parallel processing proved to be a useful method for recognizing igneous rocks to its 3D geological position. So organic reefs and igneous rocks can be identified, which provide a prescient information for further exploration. 展开更多
关键词 Xisha area Organic reefs and igneous rocks -Frequency decomposition of potential field 3D inversionof the graphic processing unit (GPU) parallel processing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部