In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy ...A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.展开更多
To solve the low power density issue of hybrid electric vehicular batteries, a combination of batteries and ultracapacitors (UCs) could be a solution. The high power density feature of UCs can improve the performance ...To solve the low power density issue of hybrid electric vehicular batteries, a combination of batteries and ultracapacitors (UCs) could be a solution. The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems (HESSs). This paper presents a parallel hybrid electric vehicle (HEV) equipped with an internal combus- tion engine and an HESS. An advanced energy management strategy (EMS), mainly based on fuzzy logic, is proposed to improve the fuel economy of the HEV and the endurance of the HESS. The EMS is capable of determining the ideal distribution of output power among the internal combustion engine, battery, and UC according to the propelling power or regenerative braking power of the vehicle. To validate the effectiveness of the EMS, numerical simulation and experimental validations are carried out. The results indicate that EMS can effectively control the power sources to work within their respective efficient areas. The battery load can be mitigated and prolonged battery life can be expected. The electrical energy consumption in the HESS is reduced by 3.91% compared with that in the battery only system. Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle.展开更多
Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driv...Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level.展开更多
The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model ba...The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model based on Insight structure. The influence of the four control strategies to the load power of the electric motor system used on parallel hybrid electric vehicle is studied. It is found that 80 percent of the motor load power points are under 1/5 of the electric peak power. The motor load power of the power assist control strategy is distributed in the widest range during generating operation, and the motor load power of the global optimization control strategy has the smallest one.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
This paper proposes a two-stage hierarchy control system with model predictive control(MPC)for connected parallel HEVs with available traffic information.In the first stage,a coordination of on-ramp merging problem us...This paper proposes a two-stage hierarchy control system with model predictive control(MPC)for connected parallel HEVs with available traffic information.In the first stage,a coordination of on-ramp merging problem using MPC is presented to optimize the merging point and trajectory for cooperative merging.After formulating the merging problem into a nonlinear optimization problem,a continuous/GMRES method is used to generate the real-time vehicle acceleration for two considered HEVs running on main road and merging road,respectively.The real-time acceleration action is used to calculate the torque demand for the dynamic system of the second stage.In the second stage,an energy management strategy(EMS)for powertrain control that optimizes the torque-split and gear ratio simultaneously is composed to improve fuel efficiency.The formulated nonlinear optimization problem is solved by sequential quadratic programming(SQP)method under the same receding horizon.The simulation results demonstrate that the vehicles can merge cooperatively and smoothly with a reasonable torque distribution and gear shift schedule.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金Shanghai Municipal Science and Technology Commission, China (No. 033012017).
文摘A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.
基金Project (No. RD-07-267) supported by the General Motors
文摘To solve the low power density issue of hybrid electric vehicular batteries, a combination of batteries and ultracapacitors (UCs) could be a solution. The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems (HESSs). This paper presents a parallel hybrid electric vehicle (HEV) equipped with an internal combus- tion engine and an HESS. An advanced energy management strategy (EMS), mainly based on fuzzy logic, is proposed to improve the fuel economy of the HEV and the endurance of the HESS. The EMS is capable of determining the ideal distribution of output power among the internal combustion engine, battery, and UC according to the propelling power or regenerative braking power of the vehicle. To validate the effectiveness of the EMS, numerical simulation and experimental validations are carried out. The results indicate that EMS can effectively control the power sources to work within their respective efficient areas. The battery load can be mitigated and prolonged battery life can be expected. The electrical energy consumption in the HESS is reduced by 3.91% compared with that in the battery only system. Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle.
文摘Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level.
文摘The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model based on Insight structure. The influence of the four control strategies to the load power of the electric motor system used on parallel hybrid electric vehicle is studied. It is found that 80 percent of the motor load power points are under 1/5 of the electric peak power. The motor load power of the power assist control strategy is distributed in the widest range during generating operation, and the motor load power of the global optimization control strategy has the smallest one.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-
文摘This paper proposes a two-stage hierarchy control system with model predictive control(MPC)for connected parallel HEVs with available traffic information.In the first stage,a coordination of on-ramp merging problem using MPC is presented to optimize the merging point and trajectory for cooperative merging.After formulating the merging problem into a nonlinear optimization problem,a continuous/GMRES method is used to generate the real-time vehicle acceleration for two considered HEVs running on main road and merging road,respectively.The real-time acceleration action is used to calculate the torque demand for the dynamic system of the second stage.In the second stage,an energy management strategy(EMS)for powertrain control that optimizes the torque-split and gear ratio simultaneously is composed to improve fuel efficiency.The formulated nonlinear optimization problem is solved by sequential quadratic programming(SQP)method under the same receding horizon.The simulation results demonstrate that the vehicles can merge cooperatively and smoothly with a reasonable torque distribution and gear shift schedule.