Unifying the models for topology design and kinematic analysis has long been a desire for the research of parallel kinematic machines(PKMs). This requires that analytical description, formulation and operation for bot...Unifying the models for topology design and kinematic analysis has long been a desire for the research of parallel kinematic machines(PKMs). This requires that analytical description, formulation and operation for both finite and instantaneous motions are performed by the same mathematical tool. Based upon finite and instantaneous screw theory, a unified and systematic approach for topology design and kinematic analysis of PKMs is proposed in this paper. Using the derivative mapping between finite and instantaneous screws built in the authors’ previous work, the finite and instantaneous motions of PKMs are analytically described by the simple and non?redundant screws in quasi?vector and vector forms. And topological and parametric models of PKMs are algebraically formulated and related. These related topological and parametric models are ready to do type synthesis and kinematic analysis of PKMs under the unified framework of screw theory. In order to show the validity of the proposed approach, a kind of two?translational and three?rotational(2T3R)5?axis PKMs is taken as example. Numerous new structures of the 2T3R PKMs are synthe?sized as the results of topology design, and their Jacobian matrix is obtained easily for parameter optimization and performance evaluation. Some of the synthesized PKMs have outstanding capabilities in terms of large workspaces and flexible orientations, and have great potential for industrial applications of machining and manufacture. Among them, METROM PKM is a typical example which has attracted a lot of attention from global companies and already been developed as commercial products. The approach is a general and unified approach that can be used in the innovative design of different kinds of PKMs.展开更多
The kinematic design of a reconfigurable miniature parallel kinematic machineis dealt with. It shows that the reconfigurability may be realized by packaging a tripod-basedparallel mechanism with fixed length struts in...The kinematic design of a reconfigurable miniature parallel kinematic machineis dealt with. It shows that the reconfigurability may be realized by packaging a tripod-basedparallel mechanism with fixed length struts into a compact and rigid frame with which the differentconfigurations can be formed. Utilizing a dual parameter model, the influences of the geometricalparameters on the dexterous performance and the workspace/machine volume ratio are investigated. Anovel global performance index for the dimensional synthesis is proposed and optimized, resulting ina set of dimensionless geometrical parameters.展开更多
根据方位特征集(Position and Orientation Characteristics,POC),提出了一种单输入多维输出的2RRS-S并联机构。分析了其拓扑结构、自由度及耦合度;采用基于耦合度的拓扑特征运动建模方法,建立了机构的运动正解模型,并通过仿真模型进行...根据方位特征集(Position and Orientation Characteristics,POC),提出了一种单输入多维输出的2RRS-S并联机构。分析了其拓扑结构、自由度及耦合度;采用基于耦合度的拓扑特征运动建模方法,建立了机构的运动正解模型,并通过仿真模型进行了验证;根据物料混合要求,设计了基于2RRS-S并联机构的多维混合机三维模型,仿真模拟了其运动轨迹以及姿态角的运动特征;以增大动平台姿态角变化量为目标函数,采用差分进化算法对机构的尺度参数进行优化,所得机构比优化前具有更好的混合运动性能。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675366)Tianjin Research Program of Application Foundation and Advanced Technology(Grant Nos.16JCYBJC19300,15JCZDJC38900)
文摘Unifying the models for topology design and kinematic analysis has long been a desire for the research of parallel kinematic machines(PKMs). This requires that analytical description, formulation and operation for both finite and instantaneous motions are performed by the same mathematical tool. Based upon finite and instantaneous screw theory, a unified and systematic approach for topology design and kinematic analysis of PKMs is proposed in this paper. Using the derivative mapping between finite and instantaneous screws built in the authors’ previous work, the finite and instantaneous motions of PKMs are analytically described by the simple and non?redundant screws in quasi?vector and vector forms. And topological and parametric models of PKMs are algebraically formulated and related. These related topological and parametric models are ready to do type synthesis and kinematic analysis of PKMs under the unified framework of screw theory. In order to show the validity of the proposed approach, a kind of two?translational and three?rotational(2T3R)5?axis PKMs is taken as example. Numerous new structures of the 2T3R PKMs are synthe?sized as the results of topology design, and their Jacobian matrix is obtained easily for parameter optimization and performance evaluation. Some of the synthesized PKMs have outstanding capabilities in terms of large workspaces and flexible orientations, and have great potential for industrial applications of machining and manufacture. Among them, METROM PKM is a typical example which has attracted a lot of attention from global companies and already been developed as commercial products. The approach is a general and unified approach that can be used in the innovative design of different kinds of PKMs.
基金This project is supported by National Natural Science Foundation of China (No.50075059) Tianjin Science and Technology Commission (No. 99370111 andNo.003802111).
文摘The kinematic design of a reconfigurable miniature parallel kinematic machineis dealt with. It shows that the reconfigurability may be realized by packaging a tripod-basedparallel mechanism with fixed length struts into a compact and rigid frame with which the differentconfigurations can be formed. Utilizing a dual parameter model, the influences of the geometricalparameters on the dexterous performance and the workspace/machine volume ratio are investigated. Anovel global performance index for the dimensional synthesis is proposed and optimized, resulting ina set of dimensionless geometrical parameters.
文摘根据方位特征集(Position and Orientation Characteristics,POC),提出了一种单输入多维输出的2RRS-S并联机构。分析了其拓扑结构、自由度及耦合度;采用基于耦合度的拓扑特征运动建模方法,建立了机构的运动正解模型,并通过仿真模型进行了验证;根据物料混合要求,设计了基于2RRS-S并联机构的多维混合机三维模型,仿真模拟了其运动轨迹以及姿态角的运动特征;以增大动平台姿态角变化量为目标函数,采用差分进化算法对机构的尺度参数进行优化,所得机构比优化前具有更好的混合运动性能。