The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invar...The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invariance.Therefore,the coordinate invariant method is an important research issue.First,the rigid-body acceleration,the time derivative of the twist,is proved to be a screw,and its physical meaning is explained.Based on the twist and the rigid-body acceleration,the acceleration of the end-effector is expressed as a linear-bilinear form,and the kinematics Hessian matrix of the manipulator(represented by Lie bracket)is deduced.Further,Newton-Euler's equation is rewritten as a linear-bilinear form,from which the dynamics Hessian matrix of a rigid body is obtained.The formulae and the dynamics Hessian matrix are proved to be coordinate invariant.Referring to the principle of virtual work,the dynamics Hessian matrix of the parallel manipulator is gotten and the detailed dynamic model is derived.An index of dynamical coupling based on dynamics Hessian matrix is presented.In the end,a foldable parallel manipulator is taken as an example to validate the deduced kinematics and dynamics formulae.The screw theory based method can simplify the kinematics and dynamics of a manipulator,also the corresponding dynamics Hessian matrix can be used to evaluate the dynamical coupling of a manipulator.展开更多
The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled...The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity. A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation. The regularity of nutation angle singularity is analyzed based on the Jacobian matrix, and the singularity surface of 3UPS-S parallel mechanisms is obtained. By applying the concept of reciprocal product in screw theory, the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity. The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB. It is revealed that there are two kinds of situation. Firstly, the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously; Secondly, two limbs cross the singular kinematic screw while the third limb parallels with that screw. It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes. This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375420,51105322)
文摘The complexity of the kinematics and dynamics of a manipulator makes it necessary to simplify the modeling process.However,the traditional representations cannot achieve this because of the absence of coordinate invariance.Therefore,the coordinate invariant method is an important research issue.First,the rigid-body acceleration,the time derivative of the twist,is proved to be a screw,and its physical meaning is explained.Based on the twist and the rigid-body acceleration,the acceleration of the end-effector is expressed as a linear-bilinear form,and the kinematics Hessian matrix of the manipulator(represented by Lie bracket)is deduced.Further,Newton-Euler's equation is rewritten as a linear-bilinear form,from which the dynamics Hessian matrix of a rigid body is obtained.The formulae and the dynamics Hessian matrix are proved to be coordinate invariant.Referring to the principle of virtual work,the dynamics Hessian matrix of the parallel manipulator is gotten and the detailed dynamic model is derived.An index of dynamical coupling based on dynamics Hessian matrix is presented.In the end,a foldable parallel manipulator is taken as an example to validate the deduced kinematics and dynamics formulae.The screw theory based method can simplify the kinematics and dynamics of a manipulator,also the corresponding dynamics Hessian matrix can be used to evaluate the dynamical coupling of a manipulator.
基金supported by Aeronautical Science Foundation of China(Grant No.20081651025)
文摘The existing researches on singularity of parallel mechanism are mostly limited to the property and regularity of singularity locus and there is no further research into the geometric relationship between uncontrolled kinematic screw and parallel mechanism in singularity. A 3UPS-S parallel mechanism is presented which fulfils 3-DOF in rotation. The regularity of nutation angle singularity is analyzed based on the Jacobian matrix, and the singularity surface of 3UPS-S parallel mechanisms is obtained. By applying the concept of reciprocal product in screw theory, the singular kinematic screw is derived when 3UPS-S parallel mechanism is in singularity. The geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism is investigated by using programs in MATLAB. It is revealed that there are two kinds of situation. Firstly, the three limbs of 3UPS-S parallel mechanism intersect the singular kinematic screw in space simultaneously; Secondly, two limbs cross the singular kinematic screw while the third limb parallels with that screw. It is concluded that the nutation angle singularity of 3UPS-S parallel mechanism belongs to the singular linear complexes. This paper sheds light into and clarifies the geometric relationship between singular kinematic screw and singular configuration of 3UPS-S parallel mechanism.