期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Constructal design of a rectangular parallel phase change microchannel in a three-dimensional electronic device 被引量:1
1
作者 ZHANG JiWen FENG HuiJun +1 位作者 CHEN LinGen GE YanLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1381-1390,共10页
Based on constructal theory,a rectangular parallel phase change microchannel model in a three-dimensional electronic device(TDED)is established with R134a as the cooling fluid.Based on the minimization of a complex fu... Based on constructal theory,a rectangular parallel phase change microchannel model in a three-dimensional electronic device(TDED)is established with R134a as the cooling fluid.Based on the minimization of a complex function(CF)composed of linear weighting sum of maximum temperature difference and pumping power consumption,constructal design of the TDED is conducted first;and then,maximum temperature difference and pumping power consumption are minimized by non-dominated sorting genetic algorithm-II methods.The results reveal that there exist an optimal mass flow rate(0.0012 kg/s)and a quadratic optimal aspect ratio(AR)(0.39)of the microchannel which lead to quadratic minimum CF(0.817).Compared with the original value,the CF after optimization is reduced by 18.34%.Reducing the inlet temperature of cooling fluid and microchannel number appropriately can help to enhance the overall performance of TDED.By using the artificial neural network and genetic algorithms in the toolboxes of Matlab software,the optimal AR gained in the Pareto solution set is located between 0.2–0.45.The smallest deviation index among three discussed strategies is 0.346,and the corresponding optimal AR is 0.413,which is selected as the optimal design strategy of the microchannel in the TDED under multiple requirements.The findings in this study can serve as theoretical guides for thermal designs of electronic devices. 展开更多
关键词 constructal theory parallel microchannel evaporation phase change three-dimensional electronic device multi-objective optimization artificial neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部