With their advantages, continuously variable transmissions have gained more popularity in the last decade by their use in mechanical transmission systems. The present paper aims to analysis the efficiency of the trans...With their advantages, continuously variable transmissions have gained more popularity in the last decade by their use in mechanical transmission systems. The present paper aims to analysis the efficiency of the transmission based on the mechanical efficiency of the planetary gear train integrated in such transmission. In this analysis, we consider the mechanical efficiency of the transmission has been determined considering how the efficiency of the CVT members changes as a function of the operating conditions. The efficiency of the planetary gear train as a function of the configuration, speeds in his three input/output shafts, and also with respect to the power flow type. Results are compared with those obtained from other methods performance evaluation of the transmission, available in the literature.展开更多
The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the lin...The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.展开更多
Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is o...Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.展开更多
The vehicle drive line system is subjected to torsional vibration from different sources of the system such as;engine fluctuating torque, Hook’s joint and the final drive. However, the essential source is the frictio...The vehicle drive line system is subjected to torsional vibration from different sources of the system such as;engine fluctuating torque, Hook’s joint and the final drive. However, the essential source is the friction torque induced in the friction elements, during their engagement. In the automatic transmission system, the planetary gear set includes several friction elements such as;clutch, band brakes, and one way clutch. During the engagement, severe torsional vibration is induced by friction which is noticeable by the passengers in the form of what so called vehicle shunt. In present paper, a torsional vibration model for Drive Line (DL) system includes three different configurations of automatic transmission is constructed. A computer program using MATLAB subroutines is implemented to obtain the system response. Effect of system parameters on the dynamic behavior and stability has been investigated. The system damping and the trend of the friction coefficient have an essential effect on the dynamic behavior and stability of the system. The system response is now predictable with change of the system parameters which opens up the opportunity in future to control the vibration level.展开更多
In the present paper;two models of the input shaft for a Longitudinal Mounted four Speed Automotive Automatic Transmission for the first time were introduced to describe the input shaft critical loads. In the first mo...In the present paper;two models of the input shaft for a Longitudinal Mounted four Speed Automotive Automatic Transmission for the first time were introduced to describe the input shaft critical loads. In the first model;the DC (Direct Clutch) connects two gears together. This gives no change in the set torque (the set output torque equal to the set input torque). In the second model;the ODB (Over Drive Brake) fixes one element of the planetary set. This is resulting, the gear set gives reduction ratio (the set output torque is not equal to the set input torque). So, the transmission input shaft is worked under two different working operating conditions of torque. Also, it is loaded by a two vertical loads which are coming from the turbine and planetary set loads respectively. They are shown that there are three critical combinations of forces (contact force, shear force, and normal force) applied on the input shaft. The critical forces can be possibility exist three types of cracks for the input shaft cross section they are: transverse (torsion stress), longitudinal (bending stress), and vertical (shear stress). The three cracks are studied in this article. The article considers three stress factors: shearing torsion stress, shear stress, and bending stress.展开更多
文摘With their advantages, continuously variable transmissions have gained more popularity in the last decade by their use in mechanical transmission systems. The present paper aims to analysis the efficiency of the transmission based on the mechanical efficiency of the planetary gear train integrated in such transmission. In this analysis, we consider the mechanical efficiency of the transmission has been determined considering how the efficiency of the CVT members changes as a function of the operating conditions. The efficiency of the planetary gear train as a function of the configuration, speeds in his three input/output shafts, and also with respect to the power flow type. Results are compared with those obtained from other methods performance evaluation of the transmission, available in the literature.
基金Supported by the National Key Research and Development Program of China(Grant No.2017YFD0700800)National Natural Science Foundation of China(Grant Nos.51775512,51975536)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ20E050003)Basic Public Welfare Technology Application Research Projects of Zhejiang Province(Grant Nos.LGN19E050002,LGN20E050006).
文摘The current automatic scallion-transplanting machine is a complicated mechanism composed of two linkage mechanisms and two band carriers.It delivers seedlings ine ciently because of the movement limitations of the linkage mechanism.This paper proposes a new high-order non-circular gear train for an automatic scallion-seedling feeding mechanism.The proposed gear train has an asymmetrical transmission ratio;i.e.,its transmission ratio varies.This allows the mechanism’s execution component to move in a long displacement and rotate in a large rotation angle.The long displacement enables the execution component to reach the designed working position,and the large rotation angle allows it to feed a scallion in the required pose.A mathematical model for calculating the asymmetrical transmission ratio was established according to the closure requirements and the full-cycle motion of the driven gear pitch curve.Then,the parameter-design model of the new seedling-feeding mechanism was established,based on precise pose points and trajectory-shape control points.Moreover,an aided-design program was developed to obtain the parameter-solution domain of the scallion-seedling feeding mechanism.The mechanism parameters,which met the seedling-feeding function,were optimized to determine the transmission ratio,using a program and a kinematic simulation.Finally,a prototype of the mechanism was produced,and a seedling-feeding experiment was carried out.One-thousand seedlings were tested at a rate of 100 seedlings per minute,and the statistical success rate was 93.4%.Thus,the automatic scallion-seedling feeding mechanism significantly improves the e ciency of automatically transplanting scallions.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975544,51675495).
文摘Current research of automatic transmission(AT)mainly focuses on the improvement of driving performance,and configuration innovation is one of the main research directions.However,finding new configurations of ATs is one of the main limitations of configuration innovation.In the present study,epicyclic gear trains(EGTs)are applied to investigate mechanisms of 9-speed ATs.Then four kinematic configurations are proposed for automatic transitions.In order to evaluate the performance of proposed mechanisms,the lever analogy method is applied to conduct kinematic and mechanical analyses.The power flow analysis is conducted,and then transmission efficiencies are calculated based on the torque method.The comparative analysis between the proposed and existing mechanisms is carried out where obtained results show that proposed mechanisms have reasonable performance and can be used in ATs.The prototype of an AT is manufactured and the speed test is conducted,which proves the accuracy of analysis and the feasibility of proposed mechanisms.
文摘The vehicle drive line system is subjected to torsional vibration from different sources of the system such as;engine fluctuating torque, Hook’s joint and the final drive. However, the essential source is the friction torque induced in the friction elements, during their engagement. In the automatic transmission system, the planetary gear set includes several friction elements such as;clutch, band brakes, and one way clutch. During the engagement, severe torsional vibration is induced by friction which is noticeable by the passengers in the form of what so called vehicle shunt. In present paper, a torsional vibration model for Drive Line (DL) system includes three different configurations of automatic transmission is constructed. A computer program using MATLAB subroutines is implemented to obtain the system response. Effect of system parameters on the dynamic behavior and stability has been investigated. The system damping and the trend of the friction coefficient have an essential effect on the dynamic behavior and stability of the system. The system response is now predictable with change of the system parameters which opens up the opportunity in future to control the vibration level.
文摘In the present paper;two models of the input shaft for a Longitudinal Mounted four Speed Automotive Automatic Transmission for the first time were introduced to describe the input shaft critical loads. In the first model;the DC (Direct Clutch) connects two gears together. This gives no change in the set torque (the set output torque equal to the set input torque). In the second model;the ODB (Over Drive Brake) fixes one element of the planetary set. This is resulting, the gear set gives reduction ratio (the set output torque is not equal to the set input torque). So, the transmission input shaft is worked under two different working operating conditions of torque. Also, it is loaded by a two vertical loads which are coming from the turbine and planetary set loads respectively. They are shown that there are three critical combinations of forces (contact force, shear force, and normal force) applied on the input shaft. The critical forces can be possibility exist three types of cracks for the input shaft cross section they are: transverse (torsion stress), longitudinal (bending stress), and vertical (shear stress). The three cracks are studied in this article. The article considers three stress factors: shearing torsion stress, shear stress, and bending stress.