提出3种策略挖掘三维Kirchhoff积分法体偏移在众核GPU(图形处理器)上的并行性.首先,使用数据传输线程和GPU计算线程构造流水线并行框架,基于此框架直接实现异步输入输出(I/O)以减少GPU和网络存储之间数据传输所需的时间;其次,使用GPU的...提出3种策略挖掘三维Kirchhoff积分法体偏移在众核GPU(图形处理器)上的并行性.首先,使用数据传输线程和GPU计算线程构造流水线并行框架,基于此框架直接实现异步输入输出(I/O)以减少GPU和网络存储之间数据传输所需的时间;其次,使用GPU的线程满载策略以使指令吞吐量最大化;最后,应用纹理缓存和常量缓存来减少片外存储器访问,并使用固定功能单元计算超越函数.实验结果表明:相比于IntelXeon E5430CPU上的算法串行版本,在nVidia Tesla C1060GPU上的优化算法实现了约20倍的加速比.比较了算法在3种不同GPU架构上的性能,并给出了CPU与GPU结果在0.5×10-4误差限下仅0.3×10-5的浮点数绝对误差.展开更多
文摘提出3种策略挖掘三维Kirchhoff积分法体偏移在众核GPU(图形处理器)上的并行性.首先,使用数据传输线程和GPU计算线程构造流水线并行框架,基于此框架直接实现异步输入输出(I/O)以减少GPU和网络存储之间数据传输所需的时间;其次,使用GPU的线程满载策略以使指令吞吐量最大化;最后,应用纹理缓存和常量缓存来减少片外存储器访问,并使用固定功能单元计算超越函数.实验结果表明:相比于IntelXeon E5430CPU上的算法串行版本,在nVidia Tesla C1060GPU上的优化算法实现了约20倍的加速比.比较了算法在3种不同GPU架构上的性能,并给出了CPU与GPU结果在0.5×10-4误差限下仅0.3×10-5的浮点数绝对误差.