Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat...Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.展开更多
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples fr...In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples from both the positive and negative classes.Positive-unlabelled learning has gained attention in many domains,especially in time-series data,in which the obtainment of labelled data is challenging.Examples which originate from the negative class are especially difficult to acquire.Self-learning is a semi-supervised method capable of PU learning in time-series data.In the self-learning approach,observations are individually added from the unlabelled data into the positive class until a stopping criterion is reached.The model is retrained after each addition with the existent labels.The main problem in self-learning is to know when to stop the learning.There are multiple,different stopping criteria in the literature,but they tend to be inaccurate or challenging to apply.This publication proposes a novel stopping criterion,which is called Peak evaluation using perceptually important points,to address this problem for time-series data.Peak evaluation using perceptually important points is exceptional,as it does not have tunable hyperparameters,which makes it easily applicable to an unsupervised setting.Simultaneously,it is flexible as it does not make any assumptions on the balance of the dataset between the positive and the negative class.展开更多
To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time wen...To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.展开更多
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ...This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced th...A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced that a parameter self-learning algorithm was based on large-step calibration and partial Newton interpolation. Furthermore, experimental verification was carried out with different welding technologies. The results show that weld bead is pegrect. Therefore, good welding quality and stability are obtained, and intelligent regulation is realized by parameters self-learning.展开更多
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall...This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.展开更多
In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arith...In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arithmetic was analyzed, simulating experiment by MATLAB software was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were successfully implemented. The study results show that the neuron self-learning PSD control method can attain a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.展开更多
Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thi...Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.展开更多
The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive comp...The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.展开更多
Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow t...Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow the scientific methodology for building and organizing information. The case becomes harder if the science is new and few scientific sources are available. Quantum computing is one of the new sciences in computer science and needs the support of specialists to develop it. Quantum computing overlaps with many sciences such as physics, chemistry, and mathematics, so any student in one of the previous disciplines may lose the correct self-learning path to find themselves learning the details of another discipline that does not achieve their goals. This article motivates students and those interested in computer science to begin studying the science of quantum computing and choose the same specialization that suits their interests. The article also provides a roadmap for self-learning steps to protect the learner from losing the correct learning path. I have categorized the stages of learning quantum computing into four steps through which all the essential basics can be learned, provided the goals mentioned in each stage which should be achieved. The learning strategy proposed in this article corresponds with individuals’ self-learning rules. Through my personal experience, the proposed learning strategy has proven its effectiveness in building information in an enjoyable scientific way.展开更多
Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can b...Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can be used to analyze people's behaviors and opinions onpublic and socialmedia platforms.In this study,hotel reviews are extracted fromthe five most attractive Sri Lankan cities,and user-written reviews are compared over user bubble ratings,which define overall travelers'experiences as a numerical scale that ranks from 1 to 5.We find that the compatibility between userwritten reviews and bubble ratings has a low correlation because bubble ratings may not represent the overall idea of users'genuine opinions expressed in their reviews.To address this problem,a two-phase approach is proposed:(1)the ensemblemethod to improve the performance of lexicon-based outputs and identify the correctlymatching user review and bubble rating;(2)the self-learning approach to finding the sentiment of a review that does not properly label by the user.The performance is studied by considering reviews incompatible with the sentiment of user bubble rating and the sentiment generated by the proposedmodel.For example,regardless of bigram“not good”,the average percentages of the word“good”for each negatively identified review from the proposed model and bubble rating are 25.63%and 38.85%,respectively.Thereby,it is apparent that the negative sentiments derived by bubble rating have significantly more positive words compared to the proposed model.展开更多
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste...This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.展开更多
The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain ti...The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain time period. The model includes a set of functions that can describe whole object, or a part of the object, or a specified functionality of the object. Thus, information about fault location can be obtained. During operation of the object the algorithm collects data received from sensors. Then the algorithm creates samples related to steady state operation. Clustering of those samples is used for the functions definition. Values of the functions in the centers of clusters are stored in the computer’s memory. To illustrate the considered approach, its application to the diagnosis of turbomachines is described.展开更多
Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate th...Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.展开更多
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum...The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.展开更多
The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Obj...The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Object Model(DOM)based parsing,the performance degrades due to sequential processing and large memory requirements,thereby requiring an efficient XML parser to mitigate these issues.In this paper,we propose a Parallel XML Tree Generator(PXTG)algorithm for accelerating the parsing of XML files and a Regression-based XML Parsing Framework(RXPF)that analyzes and predicts performance through profiling,regression,and code generation for efficient parsing.The PXTG algorithm is based on dividing the XML file into n parts and producing n trees in parallel.The profiling phase of the RXPF framework produces a dataset by measuring the performance of various parsing models including StAX,SAX,DOM,JDOM,and PXTG on different cores by using multiple file sizes.The regression phase produces the prediction model,based on which the final code for efficient parsing of XML files is produced through the code generation phase.The RXPF framework has shown a significant improvement in performance varying from 9.54%to 32.34%over other existing models used for parsing XML files.展开更多
The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study ...The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study investigates type synthesis of a parallel self-alignment ankle rehabilitation robot(PSAARR)based on the kinematic characteristics of ankle joint rotation center drift from the perspective of introducing"suitable passive degrees of freedom(DOF)"with a suitable number and form.First,the self-alignment principle of parallel ARR was proposed by deriving conditions for transforming a human-robot closed chain(HRCC)formed by an ARR and human body into a kinematic suitable constrained system and introducing conditions of"decoupled"and"less limb".Second,the relationship between the self-alignment principle and actuation wrenches(twists)of PSAARR was analyzed with the velocity Jacobian matrix as a"bridge".Subsequently,the type synthesis conditions of PSAARR were proposed.Third,a PSAARR synthesis method was proposed based on the screw theory and type of PSAARR synthesis conducted.Finally,an HRCC kinematic model was established to verify the self-alignment capability of the PSAARR.In this study,93 types of PSAARR limb structures were synthesized and the self-alignment capability of a human-robot joint axis was verified through kinematic analysis,which provides a theoretical basis for the design of such an ARR.展开更多
文摘Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
文摘In machine learning,positive-unlabelled(PU)learning is a special case within semi-supervised learning.In positiveunlabelled learning,the training set contains some positive examples and a set of unlabelled examples from both the positive and negative classes.Positive-unlabelled learning has gained attention in many domains,especially in time-series data,in which the obtainment of labelled data is challenging.Examples which originate from the negative class are especially difficult to acquire.Self-learning is a semi-supervised method capable of PU learning in time-series data.In the self-learning approach,observations are individually added from the unlabelled data into the positive class until a stopping criterion is reached.The model is retrained after each addition with the existent labels.The main problem in self-learning is to know when to stop the learning.There are multiple,different stopping criteria in the literature,but they tend to be inaccurate or challenging to apply.This publication proposes a novel stopping criterion,which is called Peak evaluation using perceptually important points,to address this problem for time-series data.Peak evaluation using perceptually important points is exceptional,as it does not have tunable hyperparameters,which makes it easily applicable to an unsupervised setting.Simultaneously,it is flexible as it does not make any assumptions on the balance of the dataset between the positive and the negative class.
文摘To respond to the further development of college English reforms,many universities employed network-based selflearning classes to aid the traditional classroom teaching,especially in teaching listening,but as time went by,some universities gradually gave them up.The paper intends to reflect on the employment of network-based self-learning listening classes,analyz ing the learning with and without its aid,and meanwhile introduce the need to re-employ it,and discuss how we can improve the network-based self-learning classes to help with students' listening.
文摘This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.
文摘A design idea was proposed that it was about intelligent digital welding machine with self-learning and self- regulation functions. The overall design scheme of software and hardware was provided. It was introduced that a parameter self-learning algorithm was based on large-step calibration and partial Newton interpolation. Furthermore, experimental verification was carried out with different welding technologies. The results show that weld bead is pegrect. Therefore, good welding quality and stability are obtained, and intelligent regulation is realized by parameters self-learning.
文摘This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.
文摘In this paper, the weld pool shape control by intelligent strategy was studied. A neuron self-learning PSD controller for backside width of weld pool in pulsed GTAW with wire filler was designed. The PSD control arithmetic was analyzed, simulating experiment by MATLAB software was done, and the validating experiments on varied heat sink workpiece and varied gap workpiece were successfully implemented. The study results show that the neuron self-learning PSD control method can attain a perfect control effect under different set values and conditions, and is suitable for the welding process with the varied structure and coefficients of control model.
基金the National Natural Science Foundation of China(Nos.12375123,11975091,and 12305130)the Natural Science Foundation of Henan Province(No.242300421048)+1 种基金China Postdoctoral Science Foundation(No.2023M731016)Henan Postdoctoral Foundation(No.HN2022164).
文摘Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12072217 and 42077254)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567).
文摘The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.
文摘Self-learning is one of the most important scientific methods that helps develop sciences, as it derives from the desire and interests of the individual. However, self-learning loses importance if it does not follow the scientific methodology for building and organizing information. The case becomes harder if the science is new and few scientific sources are available. Quantum computing is one of the new sciences in computer science and needs the support of specialists to develop it. Quantum computing overlaps with many sciences such as physics, chemistry, and mathematics, so any student in one of the previous disciplines may lose the correct self-learning path to find themselves learning the details of another discipline that does not achieve their goals. This article motivates students and those interested in computer science to begin studying the science of quantum computing and choose the same specialization that suits their interests. The article also provides a roadmap for self-learning steps to protect the learner from losing the correct learning path. I have categorized the stages of learning quantum computing into four steps through which all the essential basics can be learned, provided the goals mentioned in each stage which should be achieved. The learning strategy proposed in this article corresponds with individuals’ self-learning rules. Through my personal experience, the proposed learning strategy has proven its effectiveness in building information in an enjoyable scientific way.
文摘Among social media networks,TripAdvisor acts as the main role because everyone is eager to share and review their thoughts on their travel experiences in different destinations.Sentiment analysis is amethod that can be used to analyze people's behaviors and opinions onpublic and socialmedia platforms.In this study,hotel reviews are extracted fromthe five most attractive Sri Lankan cities,and user-written reviews are compared over user bubble ratings,which define overall travelers'experiences as a numerical scale that ranks from 1 to 5.We find that the compatibility between userwritten reviews and bubble ratings has a low correlation because bubble ratings may not represent the overall idea of users'genuine opinions expressed in their reviews.To address this problem,a two-phase approach is proposed:(1)the ensemblemethod to improve the performance of lexicon-based outputs and identify the correctlymatching user review and bubble rating;(2)the self-learning approach to finding the sentiment of a review that does not properly label by the user.The performance is studied by considering reviews incompatible with the sentiment of user bubble rating and the sentiment generated by the proposedmodel.For example,regardless of bigram“not good”,the average percentages of the word“good”for each negatively identified review from the proposed model and bubble rating are 25.63%and 38.85%,respectively.Thereby,it is apparent that the negative sentiments derived by bubble rating have significantly more positive words compared to the proposed model.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-TP20-062A1)Guangdong Basic and Applied Basic Research Foundation(2021A1515110070)。
文摘This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.
文摘The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain time period. The model includes a set of functions that can describe whole object, or a part of the object, or a specified functionality of the object. Thus, information about fault location can be obtained. During operation of the object the algorithm collects data received from sensors. Then the algorithm creates samples related to steady state operation. Clustering of those samples is used for the functions definition. Values of the functions in the centers of clusters are stored in the computer’s memory. To illustrate the considered approach, its application to the diagnosis of turbomachines is described.
基金Supported by National Natural Science Foundation of China (Grant Nos.51875495,U2037202)Hebei Provincial Science and Technology Project (Grant No.206Z1805G)。
文摘Currently,two rotations and one translation(2R1T)three-degree-of-freedom(DOF)parallel mechanisms(PMs)are widely applied in five-DOF hybrid machining robots.However,there is a lack of an effective method to evaluate the configuration stiffness of mechanisms during the mechanism design stage.It is a challenge to select appropriate 2R1T PMs with excellent stiffness performance during the design stage.Considering the operational status of 2R1T PMs,the bending and torsional stiffness are considered as indices to evaluate PMs'configuration stiffness.Subsequently,a specific method is proposed to calculate these stiffness indices.Initially,the various types of structural and driving stiffness for each branch are assessed and their specific values defined.Subsequently,a rigid-flexible coupled force model for the over-constrained 2R1T PM is established,and the proposed evaluation method is used to analyze the configuration stiffness of the five 2R1T PMs in the entire workspace.Finally,the driving force and constraint force of each branch in the whole working space are calculated to further elucidate the stiffness evaluating results by using the proposed method above.The obtained results demonstrate that the bending and torsional stiffness of the 2RPU/UPR/RPR mechanism along the x and y-directions are larger than the other four mechanisms.
基金Supported by National Natural Science Foundation of China(Grant No.52075145)S&T Program of Hebei Province of China(Grant Nos.20281805Z,E2020103001)Central Government Guides Basic Research Projects of Local Science and Technology Development Funds of China(Grant No.206Z1801G).
文摘The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
文摘The Extensible Markup Language(XML)files,widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications.With the existing Document Object Model(DOM)based parsing,the performance degrades due to sequential processing and large memory requirements,thereby requiring an efficient XML parser to mitigate these issues.In this paper,we propose a Parallel XML Tree Generator(PXTG)algorithm for accelerating the parsing of XML files and a Regression-based XML Parsing Framework(RXPF)that analyzes and predicts performance through profiling,regression,and code generation for efficient parsing.The PXTG algorithm is based on dividing the XML file into n parts and producing n trees in parallel.The profiling phase of the RXPF framework produces a dataset by measuring the performance of various parsing models including StAX,SAX,DOM,JDOM,and PXTG on different cores by using multiple file sizes.The regression phase produces the prediction model,based on which the final code for efficient parsing of XML files is produced through the code generation phase.The RXPF framework has shown a significant improvement in performance varying from 9.54%to 32.34%over other existing models used for parsing XML files.
基金Supported by Key Scientific Research Platforms and Projects of Guangdong Regular Institutions of Higher Education of China(Grant No.2022KCXTD033)Guangdong Provincial Natural Science Foundation of China(Grant No.2023A1515012103)+1 种基金Guangdong Provincial Scientific Research Capacity Improvement Project of Key Developing Disciplines of China(Grant No.2021ZDJS084)National Natural Science Foundation of China(Grant No.52105009).
文摘The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study investigates type synthesis of a parallel self-alignment ankle rehabilitation robot(PSAARR)based on the kinematic characteristics of ankle joint rotation center drift from the perspective of introducing"suitable passive degrees of freedom(DOF)"with a suitable number and form.First,the self-alignment principle of parallel ARR was proposed by deriving conditions for transforming a human-robot closed chain(HRCC)formed by an ARR and human body into a kinematic suitable constrained system and introducing conditions of"decoupled"and"less limb".Second,the relationship between the self-alignment principle and actuation wrenches(twists)of PSAARR was analyzed with the velocity Jacobian matrix as a"bridge".Subsequently,the type synthesis conditions of PSAARR were proposed.Third,a PSAARR synthesis method was proposed based on the screw theory and type of PSAARR synthesis conducted.Finally,an HRCC kinematic model was established to verify the self-alignment capability of the PSAARR.In this study,93 types of PSAARR limb structures were synthesized and the self-alignment capability of a human-robot joint axis was verified through kinematic analysis,which provides a theoretical basis for the design of such an ARR.