Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This impo...Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.展开更多
We report on our results about spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field,E,and magnetic field,B.A Nambu–Jona–Lasinio model is used to c...We report on our results about spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field,E,and magnetic field,B.A Nambu–Jona–Lasinio model is used to compute the dependence of the chiral condensate at finite temperature,E and B.We study the effect of this background on inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude.We also consider the effect of equilibration of chiral density,n_5,produced by axial anomaly on the critical temperature.The equilibration of n_5 allows for the introduction of the chiral chemical potential,u_5,which is computed selfconsistently as a function of temperature and field strength.We find that even if the chiral medium is produced by the fields the thermodynamics,with particular reference to the inverse catalysis induced by the external fields,it is not very affected by n_5 at least if the average u_5,at equilibrium is not too large.展开更多
The magnetic lens(Zumbro lens) is a critical part in proton radiography. Traditionally the matched beam for Zumbro lens in proton radiography is a virtual point source beam, which is not suitable for some cases, such ...The magnetic lens(Zumbro lens) is a critical part in proton radiography. Traditionally the matched beam for Zumbro lens in proton radiography is a virtual point source beam, which is not suitable for some cases, such as cylindrical samples. In these cases, a parallel beam is more appropriate. In this paper, a method, which uses quadrupole beamline, is proposed for designing a magnetic lens with parallel beam matched. Theoretical analysis is given. The results show that the matched beam for this lens is indeed parallel beam, while the major merits of Zumbro lens are inherited. Following this method, a theoretical design based on the 11-Me V cyclotron is presented.展开更多
The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and Г/2 of a hydrogen atom in parallel electric and magnetic fields. The method can calc...The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and Г/2 of a hydrogen atom in parallel electric and magnetic fields. The method can calculate the ground and higher excited resonances accurately and efficiently. The resonance parameters with accuracies of 10^-9 - 10^-12 for hydrogen atom in parallel fields with different field strengths and symmetries are presented and compared with previous ones. Extension to the calculation of Rydberg atom in crossed electric and magnetic fields and of atomic double excited states in external electric fields is discussed.展开更多
In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal fu...In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.展开更多
The present work deals with the behavior of fermions moving in a static magnetic induction and a time-harmonic electric field, both oriented along Oz. For the ultra-relativistic particles described by a Heun double co...The present work deals with the behavior of fermions moving in a static magnetic induction and a time-harmonic electric field, both oriented along Oz. For the ultra-relativistic particles described by a Heun double confluent equation, we derive the corresponding wave functions and the conserved current density components.展开更多
文摘Building on a new model proposed recently for calculating constant electro-magnetic field values, the present article explores the electro-magnetic field configuration generated by parallel electrical wires. This imposes a reevaluation of the drawing procedure for constructing field curves with a constant field values around multiple parallel electrical conducting wires. To achieve this, we employ methods akin to those used for creating contours on topographical maps, ensuring a consistent numerical field value along the entire length of the field curves. Subsequent calculations will be conducted for scenarios where wires are not parallel.
基金supported by the CAS President’s International Fellowship Initiative(No.2015PM008)the National Natural Science Foundation of China(Nos.11135011 and 11575190)
文摘We report on our results about spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field,E,and magnetic field,B.A Nambu–Jona–Lasinio model is used to compute the dependence of the chiral condensate at finite temperature,E and B.We study the effect of this background on inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude.We also consider the effect of equilibration of chiral density,n_5,produced by axial anomaly on the critical temperature.The equilibration of n_5 allows for the introduction of the chiral chemical potential,u_5,which is computed selfconsistently as a function of temperature and field strength.We find that even if the chiral medium is produced by the fields the thermodynamics,with particular reference to the inverse catalysis induced by the external fields,it is not very affected by n_5 at least if the average u_5,at equilibrium is not too large.
基金supported by National Natural Science Foundation of China(Nos.11475157,11405162,11205144 and 11176001)CAEP Developing Foundation(No.2014A0402016)+1 种基金CAEP President Foundation(No.201402086)CAEP Key Laboratory Foundation(No.PPL2013PZ09)
文摘The magnetic lens(Zumbro lens) is a critical part in proton radiography. Traditionally the matched beam for Zumbro lens in proton radiography is a virtual point source beam, which is not suitable for some cases, such as cylindrical samples. In these cases, a parallel beam is more appropriate. In this paper, a method, which uses quadrupole beamline, is proposed for designing a magnetic lens with parallel beam matched. Theoretical analysis is given. The results show that the matched beam for this lens is indeed parallel beam, while the major merits of Zumbro lens are inherited. Following this method, a theoretical design based on the 11-Me V cyclotron is presented.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674154)
文摘The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and Г/2 of a hydrogen atom in parallel electric and magnetic fields. The method can calculate the ground and higher excited resonances accurately and efficiently. The resonance parameters with accuracies of 10^-9 - 10^-12 for hydrogen atom in parallel fields with different field strengths and symmetries are presented and compared with previous ones. Extension to the calculation of Rydberg atom in crossed electric and magnetic fields and of atomic double excited states in external electric fields is discussed.
基金supported in part by the National Natural Science Foundation of China(11361018,11461015)Guangxi Natural Science Foundation(2014GXNSFFA118001)+3 种基金Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112,YQ16112)Guilin Science and Technology Project(20140127-2)the Innovation Project of Guangxi Graduate Education and Innovation Project of GUET Graduate Education(YJCXB201502)Guangxi Key Laboratory of Cryptography and Information Security(GCIS201624)
文摘In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm.
文摘The present work deals with the behavior of fermions moving in a static magnetic induction and a time-harmonic electric field, both oriented along Oz. For the ultra-relativistic particles described by a Heun double confluent equation, we derive the corresponding wave functions and the conserved current density components.