It is proved that the so-called a set of 12-parameter rectangular plate elements with high accuracy constructed by using double set parameter method and undetermined method are, in fact, the same one; the real shape f...It is proved that the so-called a set of 12-parameter rectangular plate elements with high accuracy constructed by using double set parameter method and undetermined method are, in fact, the same one; the real shape function space is nothing but the Adini's element's, which has nothing to do with the other high degree terms and leads to a new method for constructing the high accuracy plate elements. This fact has never been seen for other conventional and unconventional, conforming and nonconforming rectangular plate elements, such as Quasi-conforming elements, generalized conforming elements and other double set parameter finite elements. Moreover, such kind of rectangular elements can not be constructed by the conventional finite element methods.展开更多
In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test r...In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test rig is used as a prototype of a rotor system to validate a novel parameter identification technique based on an FE model. Rotor shaft vibration at varying operating speeds is measured and correlated with the FE results. Firstly, the theories of the FE modelling and identification technique are introduced. Then disk unbalance parameter, stiffness and damping coefficients of the bearing supports on the test rig are identified. The calculated responses of the FE model with identified parameters are studied in comparison with the experimental results.展开更多
The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibratio...The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for pre...Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.展开更多
文摘It is proved that the so-called a set of 12-parameter rectangular plate elements with high accuracy constructed by using double set parameter method and undetermined method are, in fact, the same one; the real shape function space is nothing but the Adini's element's, which has nothing to do with the other high degree terms and leads to a new method for constructing the high accuracy plate elements. This fact has never been seen for other conventional and unconventional, conforming and nonconforming rectangular plate elements, such as Quasi-conforming elements, generalized conforming elements and other double set parameter finite elements. Moreover, such kind of rectangular elements can not be constructed by the conventional finite element methods.
基金supported by the National Natural Science Foundation of China(50775028)the Ministry of Science and Technology of China for the 863 High-Tech Scheme(2007AA04Z418)
文摘In order to achieve prediction for vibration of rotating machinery, an accurate finite element (FE) model and an efficient parameter identification method of the rotor system are required. In this research, a test rig is used as a prototype of a rotor system to validate a novel parameter identification technique based on an FE model. Rotor shaft vibration at varying operating speeds is measured and correlated with the FE results. Firstly, the theories of the FE modelling and identification technique are introduced. Then disk unbalance parameter, stiffness and damping coefficients of the bearing supports on the test rig are identified. The calculated responses of the FE model with identified parameters are studied in comparison with the experimental results.
基金Supported by National Natural Science Foundation of China(Grant Nos.51105092,61403106)International Science and Technology Cooperation Program of China(Grant No.2014DFR50250)the 111 Project,China(Grant No.B07018)
文摘The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.
基金Funded by the National Natural Science Foundation of China(Nos.51772246,51272210,50902112,and U1737209)the Program for New Century Excellent Talents in University(NCET-13-0474)+1 种基金the Fundamental Research Funds for the Central Universities(3102017jg02001)the National Program for Support of Topnotch Young Professionals
文摘Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.