To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi...To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.展开更多
BACKGROUND By comprehensively analyzing the blood flow parameters of the umbilical and middle cerebral arteries,doctors can more accurately identify fetal intrauterine distress,as well as assess its severity,so that t...BACKGROUND By comprehensively analyzing the blood flow parameters of the umbilical and middle cerebral arteries,doctors can more accurately identify fetal intrauterine distress,as well as assess its severity,so that timely interventions can be implemented to safeguard the health and safety of the fetus.AIM To identify the relationship between ultrasound parameters of the umbilical and middle cerebral arteries and intrauterine distress.METHODS Clinical data of pregnant women admitted between January 2021 and January 2023 were collected and divided into the observation and control groups(n=50 each),according to the presence or absence of intrauterine distress.The ultrasound hemodynamic parameters of the uterine artery(UtA),fetal middle cerebral artery(MCA),and umbilical artery(UmA)were compared with neonatal outcomes and occurrence of intrauterine distress in the two groups.RESULTS Comparison of ultrasonic hemodynamic parameters,resistance index(RI),pulsatility index(PI),and systolic maximal blood flow velocity of UmA compared to diastolic blood flow velocity(S/D),revealed higher values of fetal MCA,PI,and S/D of UmA in pregnant women with UtA compared to controls(P<0.05),while there was no difference between the two groups in terms of RI(P<0.05)The incidence of a neonatal Apgar score of 8-10 points was lower in the observation group(66.7%)than in the control group(90.0%),and neonatal weight(2675.5±27.6 g)was lower than in the control group(3117.5±31.2 g).Further,cesarean section rate was higher in the observation group(70.0%)than in the control group(11.7%),and preterm labor rate was higher in the observation group(40.0%)than in the control group(10.0%).The incidence of fetal distress,neonatal growth restriction and neonatal asphyxia were also higher in the observation group(all P<0.05).CONCLUSION Fetal MCA,UmA,and maternal UtA hemodynamic abnormalities all develop in pregnant women with intrauterine distress during late pregnancy,which suggests that clinical attention should be paid to them,and monitoring should be strengthened to provide guidance for clinical intervention.展开更多
The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal comp...The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal compositions.The basic breaching parameters such as flood peak discharge are vital indicators of risk assessment.In this study,we elucidated the failure process of the debris flow dam through the flume experiment,and built the calculation equation of the breaching parameters by selecting critical factors.The result shows that the overtopping failure process of the debris flow dam is capable of forming significantly retrogressive scarps,and the failure process experiences three stages,the formation of the retrogressive scarp,the erosion of the retrogressive scarp,and the decline of the retrogressive scarp.Five factors used for establishing the calculation equations for peak discharge(Qp),final width(Wb)of the breach,and duration(T)of the debris flow dam failure are dam height(h),reservoir capacity(V),the fine grain content(P0.075)of the soil,the nonuniformity coefficient(Cu)of the soil,and the upper limit grain size(D90)of the soil,respectively.In the three equations,the correlation coefficients between Qp,Wb,T and the five factors were 0.86,0.70,0.63,respectively.The equations still need to be modified and verified in actual cases.展开更多
Knowing crop water uptake each day is useful for developing irrigation scheduling. Many technologies have been used to estimate daily crop water use. Sap flow is one of the technologies that measure water flow through...Knowing crop water uptake each day is useful for developing irrigation scheduling. Many technologies have been used to estimate daily crop water use. Sap flow is one of the technologies that measure water flow through the stem of a plant and estimate daily crop water uptake. Sap flow sensor is an effective direct method for measuring crop water use, but it is relatively expensive and requires frequent maintenance. Therefore, alternative methods, such as evapotranspiration based on FAO 56 Penman-Monteith equation and other weather parameters were evaluated to find the correlation with sap flow. In this study, Dynamax Flow 32-1K sap flow system was utilized to monitor potato water use. The results show sap flow has a strong correlation with evapotranspiration (RMSE = 1.34, IA = 0.89, MBE = -0.83), solar radiation (RMSE = 2.25, IA = 0.72, MBE = -1.80), but not with air temperature, relative humidity, wind speed, and vapor pressure. It is worth noting that the R<sup>2</sup> between sap flow and relative humidity was 0.55. This study has concluded that daily evapotranspiration and solar radiation can be used as alternative methods to estimate sap flow.展开更多
In order To evaluate whether the parameters of spiral artery blood flow, as measured by transvaginal color Doppler, may be used to assess endometrium receptivity prior to embryo transfer (ET), a retrospective study of...In order To evaluate whether the parameters of spiral artery blood flow, as measured by transvaginal color Doppler, may be used to assess endometrium receptivity prior to embryo transfer (ET), a retrospective study of 94 infertile women who had undergone ART treatments with different outcomes (pregnant or nonpregnant) was done. Subendometrial blood flow was evaluated. The resistance index (RI), systolic/diastolic ratio (S/D) and pulsatility index (PI) were significantly lower in those who achieved pregnancy as compared with those who did not: 0.62±0.04 vs 0.68±0.04 (P<0.001), 2.66±0.33 vs 3.19±0.39 (P<0.01) and 1.15±0.17 vs 1.34±0.22 (P<0.05), respectively. Furthermore, when RI>0.72, PI>1.6, and S/D>3.6, no pregnancy occurred. These data suggest that the parameters of spiral artery blood flow could be used as a new assay in predicting endometrial receptivity before ET.展开更多
The hot compression experiments were performed to investigate the effects of hot deformation parameters on the flow stress of BT20(Ti-6Al-2Zr-1Mo-1V) titanium alloy. The results show that the flow stress decreases wit...The hot compression experiments were performed to investigate the effects of hot deformation parameters on the flow stress of BT20(Ti-6Al-2Zr-1Mo-1V) titanium alloy. The results show that the flow stress decreases with the increment of deformation temperature and increases with the growth of strain rate. The peak stress moves toward the direction of strain reducing and the strain rate sensitivity increases with the rising deformation temperature. There is obvious deformation heating created during hot deformation under relatively higher strain rate and lower deformation temperature. The improved back propagation(BP) neural network with 3-20-16-1 architecture has been employed to establish the prediction model of flow stress using deformation degree, deformation temperature and strain rate as input variables. The predicted values obtained by BP network agree well with the measured values, the relative error is within 6.5% for the sample data and not bigger than 9% for the non-sample data, which indicates that the ANNs adopted can predict the flow stress of BT20 alloy effectively and can be used as constitutive relationship system applied to FEM simulation of plastic deformation.展开更多
The breakdown of soil aggregates under rainfall and their abrasion in overland flow are important processes in water erosion due to the production of more fine and transportable particles and,the subsequent significan...The breakdown of soil aggregates under rainfall and their abrasion in overland flow are important processes in water erosion due to the production of more fine and transportable particles and,the subsequent significant effect on the erosion intensity.Currently,little is known about the effects of sediment load on the soil aggregate abrasion and the relationship of this abrasion with some related hydraulic parameters.Here,the potential effects of sediment load on soil aggregate abrasion and hydraulic parameters in overland flow were investigated through a series of experiments in a 3.8-m-long hydraulic flume at the slope gradients of 8.7 and 26.8%,unit flow discharges from 2×10^-3 to 6×10^-3 m^2 s^-1,and the sediment concentration from 0 to 110 kg m-3.All the aggregates from Ultisols developed Quaternary red clay,Central China.The results indicated that discharge had the most significant(P<0.01)effect on the aggregates abrasion with the contributions of 58.76 and 60.34%,followed by sediment feed rate,with contributions of 39.66 and 34.12%at the slope gradients of 8.7 and 26.8%,respectively.The abrasion degree of aggregates was found to increase as a power function of the sediment concentration.Meanwhile,the flow depth,friction factor,and shear stress increased as a power function along with the increase of sediment concentration at different slope gradients and discharges.Reynolds number was obviously affected by sediment concentration and it decreased as sediment concentration increased.The ratio of the residual weight to the initial weight of soil aggregates(Wr/Wi)was found to increase as the linear function with an increasing flow depth(P=0.008)or Reynolds number(P=0.002)in the sediment-laden flow.The Wr/Wi values followed a power function decrease with increasing friction factor or shear stress in the sediment-laden flow,indicating that friction factor is the best hydraulic parameter for prediction of soil aggregate abrasion under different sediment load conditions.The information regarding the soil aggregate abrasion under various sediment load conditions can facilitate soil process-based erosion modeling.展开更多
This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and th...This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique.Numerical model was established to simulate the three-dimensional flow field.Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry(PIV)measurement results.By defining the weight error function K,the S-A model was selected as the appropriate turbulence model.Then,a three-factor,three-level response surface numerical test was conducted to investigate the influence of flow passage connection type,cavity diameter and cavity length-diameter ratio on pressure loss.The results show that the Box-Benhnken Design(BBD)model can predict the total pressure loss accurately.The optimal factor level appeared in flow passage connection type II,14.64 mm diameter and 67.53%cavity length-diameter ratio.The total pressure loss decreased by 11.15%relative to the worst factor level,and total pressure loss can be reduced by 64.75%when using an arc transition right-angled flow passage,which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks.展开更多
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow...Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting(CC)molds with narrow widths for the production of automobile exposed panels.Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process.The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold.Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone.The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min^−1 and casting speed of 1.7 m·min^−1.Under the present experimental conditions,the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.展开更多
Objective:To evaluate the correlation of the quantifiable parameters of blood flow pattern derived with dynamic CT in solitary bronchogenic adenocarcinoma(SBA).Methods:46 patients with solitary bronchogenic adenocarci...Objective:To evaluate the correlation of the quantifiable parameters of blood flow pattern derived with dynamic CT in solitary bronchogenic adenocarcinoma(SBA).Methods:46 patients with solitary bronchogenic adenocarcinomas (SBA)(diameter≤4 cm)underwent multi-location dynamic contrast material-enhanced(nonionic contrast material was administrated via the antecubital vein at a rate of 4 mL/s by using an autoinjector 90 mL,4×5 mm or 4×2.5 mm scanning mode with stable table were performed)serial CT.Precontrast and postcontrast attenuation on every scan was recorded.Perfusion (PBA),peak height(PHBA),ratio of peak height of the SPN to that of the aorta(BA-to-A ratio)and mean transit time(MTT)were calculated.The correlation between peak height of the aorta(PHA)and parameters of the SBA(PHBA,BA-to-A ratio,PBA,and MTT)and those among parameters of the SBA were assessed by means of linear regression analysis.Regression equation among parameters of the SBA were obtain by means of stepwise regression.Results:The correlation between the SBA peak height(PHBA,36.78 HU±12.02)and the aortic peak height(PHA)was significant(r=0.506,P<0.0001).No significant cor- relation was found between the BA-to-Apeak height ratio(15.33%±4.55)and the aortic peak height(r=0.130,P=0.388> 0.05)as it was between the SBA perfusion(PBA,31.86 mL/min/100 g±9.74)and the aortic peak height(r=0.049,P=0.749 >0.05).The SBA perfusion correlated with the PHBA and the BA-to-A peak height ratio(r=0.394,P=0.007<0.05;r=0.407, P=0.005<0.05).The PHBA correlated positively with the BA-to-A peak height ratio(r=0.781,P<0.0001).Mean transit time was 14.84 s±5.52.PBA=18.500+0.872×BA-to-A ratio.BA-to-A ratio=4.467+0.295×PHBA.Conclusion:The linear correlation between the SBA perfusion and BA-to-Aratio and that between BA-to-Aratio and PHBA can be expressed by equation. It is possible to design a simpler scanning procedure of investigation of bronchogenic adenocarcinoma angiogenesis.展开更多
The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of buildin...The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.展开更多
Several special mechanical properties,such as dilatancy and compressibility,of cemented paste backfill(CPB)are controlled by its internal microstructure and evolution.The mesoscopic structure changes of CPB during the...Several special mechanical properties,such as dilatancy and compressibility,of cemented paste backfill(CPB)are controlled by its internal microstructure and evolution.The mesoscopic structure changes of CPB during the development process were investigated.On the basis of the scanning electron microscopy(SEM)and mechanical test results of CPB,the particle size information of CPB was extracted,and a two-dimensional particle flow code(PFC)model of CPB was established to analyze the evolution rule of mesoscopic parameters during CPB development.The embedded FISH language in PFC was used to develop a program for establishing a PFC model on the basis of the SEM results.The mesoscopic parameters of CPB samples at different curing times,such as coordination number(C_(n)),contact force chain,and rose diagram,were obtained by recording and loading and used to analyze the intrinsic relationship between mesoscopic parameter variations and macroscopic mechanical response during CPB development.It is of considerable significance to establish the physical model of CPB using the PFC to reveal the mesoscopic structure of CPB.展开更多
Objective: To evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in malignant solitary pulmonary nodules and tumor size. Methods: Sixty-eight patients with mal...Objective: To evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in malignant solitary pulmonary nodules and tumor size. Methods: Sixty-eight patients with malignant solitary pulmonary nodules (SPNs) (diameter 〈4 cm) underwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubitai vein at a rate of 4mL/s by using an autoinjector, 4×5 mm or 4×2.5 mm scanning mode with stable table were performed). Precontrast and postcontrast attenuation on every scan was recorded. Blood flow (BF), peak, height (PHSPN), ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio) and mean transit time (MTT) were calculated. The correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in malignant solitary pulmonary nodules and tumor size were assessed by means of linear regression analysis. Results: No significant correlations were found between the tumor size and each of the peak height (PHSPN) (35.79±10.76 Hu), ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio), (14.27%±4.37) and blood flow (BF) (30.18 mL/min/100 g±9.58) (r=0.180, P=0.142〉0.05; r=0.205, P=0.093〉0.05; r=0.008, P=0.947〉0.05). Conclusion: No significant correlations were found between the tumor size and each of the quantifiable parameters of blood flow pattern derived with dynamic CT in malignant solitary pulmonary nodules.展开更多
An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the de...An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.展开更多
After the linear analytical method of unsteady flow theory is further improved,an innovative and faster algorithm is introduced.The water storage in a confined aquifer is derived from the water transmissivity coeffici...After the linear analytical method of unsteady flow theory is further improved,an innovative and faster algorithm is introduced.The water storage in a confined aquifer is derived from the water transmissivity coefficient and the water-pressure conductivity coefficient.The water transmissivity coefficient is approximated by a Taylorseries expansion of drawdown,and the water-pressure conductivity coefficient is obtained by the average drawdown.In this algorithm,the distance of the observation points from the pumping well must be short.When the distance is as short as the radius of the main pumping well,the data of the drawdown difference between the sidewall and the center of pumping well are difficult to measure,but the same results can be achieved based on the assumption that the drawdown difference approximates to the drawdown of the observation wells at a radial distance from the pumping well according to the algorithm.Without the help of charts,this algorithm is more concise and efficient,which has been verified by the test of water pumping project in Tianjin Binhai International Airport.展开更多
Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density e...Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density etc.) of bursting coal-gas flow and gas pressure in the hole, then pointed out the critical state change of coal-gas flow under different pressure conditions which had the very tremendous influence on both stability and destructiveness of the entire coal and gas outburst system. The mathematical processing and results of one-dimensional flow under the perfect condition are simple and explicit in this paper, which has the certain practical significance.展开更多
The disappearance of collective flow for <sup>64</sup>Zn+<sup>58</sup>Ni collisions is studied withBUU equation.It is found that the balance energy,E<sub>bal</sub>,is very sensitive...The disappearance of collective flow for <sup>64</sup>Zn+<sup>58</sup>Ni collisions is studied withBUU equation.It is found that the balance energy,E<sub>bal</sub>,is very sensitive to the in-me-dium nucleon-nucleon cross section and increases with the impact parameter.展开更多
OBJECTIVE: To observe the effect of Modified Erchen Decoction on cervical spondylotic vertebral arteriopathy with stagnation and blockade of phlegm-dampness syndrome and effects on cerebral blood flow parameters. METH...OBJECTIVE: To observe the effect of Modified Erchen Decoction on cervical spondylotic vertebral arteriopathy with stagnation and blockade of phlegm-dampness syndrome and effects on cerebral blood flow parameters. METHODS: A total of 80 cervical spondylotic vertebral arteriopathy(CSA) patients with stagnation and blockade of phlegmdampness syndrome admitted to our hospital from October 2016 to April 2017 were selected and randomly divided into observation group and control group, with 40 cases in each group. The observation group was treated with Modified Erchen Decoction and the control group was given conventional treatment with Western medicine. After 4 weeks of treatment, the main clinical symptoms and signs(vertigo, neck and shoulder pain, headache, psychological and social adjustment, daily life and work) and cerebral blood flow parameters [the peak values of intracranial vertebral-basal artery diastolic blood flow velocity(Vd) and systolic blood flow velocity(Vp)] were compared between the 2 groups. The total clinical effective rate and adverse reactions during treatment were also compared. RESULTS: After treatment, the total effective rate of the observation group was 90.0%, which was significantly higher than that of the control group(77.5%). The difference between the two groups was statistically significant(P < 0.05). After treatment, The scores of vertigo, neck and shoulder pain, headache, psychology and society adaptation, daily life and work were significantly increased(P < 0.05), and the above scores of the observation group were increased more obviously. The difference between the groups was statistically significant(P < 0.05). After treatment, the levels of Vd and Vp were significantly increased(P < 0.05), and the increase of the above indexes was more obvious in the observation group. The difference between the 2 groups was statistically significant(P < 0.05). There were no significant abnormalities in blood routine, urine routine, liver function and renal function. There was no significant difference in the incidence of adverse reactions between the 2 groups.(P > 0.05). CONCLUSION: The treatment of vertebral artery type cervical spondylopathy with stagnation and blockade of phlegm-dampness syndrome by Modified Erchen Decoction can effectively relieve the main clinical symptoms and signs, improve cerebral blood flow parameters, and improve the peak values of vertebral-basal artery diastolic blood flow velocity(Vd) and systolic blood flow velocity(Vp), which is safe and effective, and helps to promote the recovery of cervical function.展开更多
文摘To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.
文摘BACKGROUND By comprehensively analyzing the blood flow parameters of the umbilical and middle cerebral arteries,doctors can more accurately identify fetal intrauterine distress,as well as assess its severity,so that timely interventions can be implemented to safeguard the health and safety of the fetus.AIM To identify the relationship between ultrasound parameters of the umbilical and middle cerebral arteries and intrauterine distress.METHODS Clinical data of pregnant women admitted between January 2021 and January 2023 were collected and divided into the observation and control groups(n=50 each),according to the presence or absence of intrauterine distress.The ultrasound hemodynamic parameters of the uterine artery(UtA),fetal middle cerebral artery(MCA),and umbilical artery(UmA)were compared with neonatal outcomes and occurrence of intrauterine distress in the two groups.RESULTS Comparison of ultrasonic hemodynamic parameters,resistance index(RI),pulsatility index(PI),and systolic maximal blood flow velocity of UmA compared to diastolic blood flow velocity(S/D),revealed higher values of fetal MCA,PI,and S/D of UmA in pregnant women with UtA compared to controls(P<0.05),while there was no difference between the two groups in terms of RI(P<0.05)The incidence of a neonatal Apgar score of 8-10 points was lower in the observation group(66.7%)than in the control group(90.0%),and neonatal weight(2675.5±27.6 g)was lower than in the control group(3117.5±31.2 g).Further,cesarean section rate was higher in the observation group(70.0%)than in the control group(11.7%),and preterm labor rate was higher in the observation group(40.0%)than in the control group(10.0%).The incidence of fetal distress,neonatal growth restriction and neonatal asphyxia were also higher in the observation group(all P<0.05).CONCLUSION Fetal MCA,UmA,and maternal UtA hemodynamic abnormalities all develop in pregnant women with intrauterine distress during late pregnancy,which suggests that clinical attention should be paid to them,and monitoring should be strengthened to provide guidance for clinical intervention.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20112,U19A2049)Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)CAS Light of West China Program。
文摘The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal compositions.The basic breaching parameters such as flood peak discharge are vital indicators of risk assessment.In this study,we elucidated the failure process of the debris flow dam through the flume experiment,and built the calculation equation of the breaching parameters by selecting critical factors.The result shows that the overtopping failure process of the debris flow dam is capable of forming significantly retrogressive scarps,and the failure process experiences three stages,the formation of the retrogressive scarp,the erosion of the retrogressive scarp,and the decline of the retrogressive scarp.Five factors used for establishing the calculation equations for peak discharge(Qp),final width(Wb)of the breach,and duration(T)of the debris flow dam failure are dam height(h),reservoir capacity(V),the fine grain content(P0.075)of the soil,the nonuniformity coefficient(Cu)of the soil,and the upper limit grain size(D90)of the soil,respectively.In the three equations,the correlation coefficients between Qp,Wb,T and the five factors were 0.86,0.70,0.63,respectively.The equations still need to be modified and verified in actual cases.
文摘Knowing crop water uptake each day is useful for developing irrigation scheduling. Many technologies have been used to estimate daily crop water use. Sap flow is one of the technologies that measure water flow through the stem of a plant and estimate daily crop water uptake. Sap flow sensor is an effective direct method for measuring crop water use, but it is relatively expensive and requires frequent maintenance. Therefore, alternative methods, such as evapotranspiration based on FAO 56 Penman-Monteith equation and other weather parameters were evaluated to find the correlation with sap flow. In this study, Dynamax Flow 32-1K sap flow system was utilized to monitor potato water use. The results show sap flow has a strong correlation with evapotranspiration (RMSE = 1.34, IA = 0.89, MBE = -0.83), solar radiation (RMSE = 2.25, IA = 0.72, MBE = -1.80), but not with air temperature, relative humidity, wind speed, and vapor pressure. It is worth noting that the R<sup>2</sup> between sap flow and relative humidity was 0.55. This study has concluded that daily evapotranspiration and solar radiation can be used as alternative methods to estimate sap flow.
文摘In order To evaluate whether the parameters of spiral artery blood flow, as measured by transvaginal color Doppler, may be used to assess endometrium receptivity prior to embryo transfer (ET), a retrospective study of 94 infertile women who had undergone ART treatments with different outcomes (pregnant or nonpregnant) was done. Subendometrial blood flow was evaluated. The resistance index (RI), systolic/diastolic ratio (S/D) and pulsatility index (PI) were significantly lower in those who achieved pregnancy as compared with those who did not: 0.62±0.04 vs 0.68±0.04 (P<0.001), 2.66±0.33 vs 3.19±0.39 (P<0.01) and 1.15±0.17 vs 1.34±0.22 (P<0.05), respectively. Furthermore, when RI>0.72, PI>1.6, and S/D>3.6, no pregnancy occurred. These data suggest that the parameters of spiral artery blood flow could be used as a new assay in predicting endometrial receptivity before ET.
文摘The hot compression experiments were performed to investigate the effects of hot deformation parameters on the flow stress of BT20(Ti-6Al-2Zr-1Mo-1V) titanium alloy. The results show that the flow stress decreases with the increment of deformation temperature and increases with the growth of strain rate. The peak stress moves toward the direction of strain reducing and the strain rate sensitivity increases with the rising deformation temperature. There is obvious deformation heating created during hot deformation under relatively higher strain rate and lower deformation temperature. The improved back propagation(BP) neural network with 3-20-16-1 architecture has been employed to establish the prediction model of flow stress using deformation degree, deformation temperature and strain rate as input variables. The predicted values obtained by BP network agree well with the measured values, the relative error is within 6.5% for the sample data and not bigger than 9% for the non-sample data, which indicates that the ANNs adopted can predict the flow stress of BT20 alloy effectively and can be used as constitutive relationship system applied to FEM simulation of plastic deformation.
基金financially supported by the National Natural Science Foundation of China(41771304)the National Key Research and Development Program of China(2017YFC0505404)。
文摘The breakdown of soil aggregates under rainfall and their abrasion in overland flow are important processes in water erosion due to the production of more fine and transportable particles and,the subsequent significant effect on the erosion intensity.Currently,little is known about the effects of sediment load on the soil aggregate abrasion and the relationship of this abrasion with some related hydraulic parameters.Here,the potential effects of sediment load on soil aggregate abrasion and hydraulic parameters in overland flow were investigated through a series of experiments in a 3.8-m-long hydraulic flume at the slope gradients of 8.7 and 26.8%,unit flow discharges from 2×10^-3 to 6×10^-3 m^2 s^-1,and the sediment concentration from 0 to 110 kg m-3.All the aggregates from Ultisols developed Quaternary red clay,Central China.The results indicated that discharge had the most significant(P<0.01)effect on the aggregates abrasion with the contributions of 58.76 and 60.34%,followed by sediment feed rate,with contributions of 39.66 and 34.12%at the slope gradients of 8.7 and 26.8%,respectively.The abrasion degree of aggregates was found to increase as a power function of the sediment concentration.Meanwhile,the flow depth,friction factor,and shear stress increased as a power function along with the increase of sediment concentration at different slope gradients and discharges.Reynolds number was obviously affected by sediment concentration and it decreased as sediment concentration increased.The ratio of the residual weight to the initial weight of soil aggregates(Wr/Wi)was found to increase as the linear function with an increasing flow depth(P=0.008)or Reynolds number(P=0.002)in the sediment-laden flow.The Wr/Wi values followed a power function decrease with increasing friction factor or shear stress in the sediment-laden flow,indicating that friction factor is the best hydraulic parameter for prediction of soil aggregate abrasion under different sediment load conditions.The information regarding the soil aggregate abrasion under various sediment load conditions can facilitate soil process-based erosion modeling.
基金Projects(51705446,51890881) supported by the National Natural Science Foundation of China
文摘This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique.Numerical model was established to simulate the three-dimensional flow field.Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry(PIV)measurement results.By defining the weight error function K,the S-A model was selected as the appropriate turbulence model.Then,a three-factor,three-level response surface numerical test was conducted to investigate the influence of flow passage connection type,cavity diameter and cavity length-diameter ratio on pressure loss.The results show that the Box-Benhnken Design(BBD)model can predict the total pressure loss accurately.The optimal factor level appeared in flow passage connection type II,14.64 mm diameter and 67.53%cavity length-diameter ratio.The total pressure loss decreased by 11.15%relative to the worst factor level,and total pressure loss can be reduced by 64.75%when using an arc transition right-angled flow passage,which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks.
基金This work was financially supported by the Hunan Valin Lianyuan Iron&Steel Co.,Ltd.,China(No.18H00582).The authors are grateful to Hunan Valin Lianyuan Iron&Steel Co.,Ltd.,China for their assistance with the industrial measurement of velocities near the mold surface.
文摘Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting(CC)molds with narrow widths for the production of automobile exposed panels.Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process.The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold.Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone.The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min^−1 and casting speed of 1.7 m·min^−1.Under the present experimental conditions,the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.
文摘Objective:To evaluate the correlation of the quantifiable parameters of blood flow pattern derived with dynamic CT in solitary bronchogenic adenocarcinoma(SBA).Methods:46 patients with solitary bronchogenic adenocarcinomas (SBA)(diameter≤4 cm)underwent multi-location dynamic contrast material-enhanced(nonionic contrast material was administrated via the antecubital vein at a rate of 4 mL/s by using an autoinjector 90 mL,4×5 mm or 4×2.5 mm scanning mode with stable table were performed)serial CT.Precontrast and postcontrast attenuation on every scan was recorded.Perfusion (PBA),peak height(PHBA),ratio of peak height of the SPN to that of the aorta(BA-to-A ratio)and mean transit time(MTT)were calculated.The correlation between peak height of the aorta(PHA)and parameters of the SBA(PHBA,BA-to-A ratio,PBA,and MTT)and those among parameters of the SBA were assessed by means of linear regression analysis.Regression equation among parameters of the SBA were obtain by means of stepwise regression.Results:The correlation between the SBA peak height(PHBA,36.78 HU±12.02)and the aortic peak height(PHA)was significant(r=0.506,P<0.0001).No significant cor- relation was found between the BA-to-Apeak height ratio(15.33%±4.55)and the aortic peak height(r=0.130,P=0.388> 0.05)as it was between the SBA perfusion(PBA,31.86 mL/min/100 g±9.74)and the aortic peak height(r=0.049,P=0.749 >0.05).The SBA perfusion correlated with the PHBA and the BA-to-A peak height ratio(r=0.394,P=0.007<0.05;r=0.407, P=0.005<0.05).The PHBA correlated positively with the BA-to-A peak height ratio(r=0.781,P<0.0001).Mean transit time was 14.84 s±5.52.PBA=18.500+0.872×BA-to-A ratio.BA-to-A ratio=4.467+0.295×PHBA.Conclusion:The linear correlation between the SBA perfusion and BA-to-Aratio and that between BA-to-Aratio and PHBA can be expressed by equation. It is possible to design a simpler scanning procedure of investigation of bronchogenic adenocarcinoma angiogenesis.
基金Project(2006BAJ01B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plane Period
文摘The variation characteristics of aquifer parameters,induced by groundwater source heat pump(GWSHP) operation under variable flow,were theoretically analyzed through a case study,in which the characteristics of building air conditioning load were considered.The results,compared with the constant flow operation,indicate that the influence on the variations of porosity,hydraulic conductivity and confined water head is decreased by 48%,51% and 71%,respectively,under variable flow operation.The security of variable flow operation is superior to that of constant flow.It is also concluded that the climate region and function of the buildings are primary factors which affect the suitability of variable flow operation in GWSHP.
基金financially supported by the National Natural Science Foundation of China(Nos.51874229,52074212,51674188,51504182,51404191,and 51405381)the Natural Science Basic Research Plan of Shaanxi Province of China(Nos.2015JQ5187,2018JQ5183,and 2018JM5161)+3 种基金the Scientific Research Program funded by the Shaanxi Education Department(No.15JK1466)the China Postdoctoral Science Foundation(No.2015M582685)the Outstanding Youth Science Fund of Xi’an University of Science and Technology(No.2018YQ2-01)supported by the National Research Council of Science&and Technology(NST)grant by the Korea Korean government(MSIP)(No.CRC-16-38502-KICT)。
文摘Several special mechanical properties,such as dilatancy and compressibility,of cemented paste backfill(CPB)are controlled by its internal microstructure and evolution.The mesoscopic structure changes of CPB during the development process were investigated.On the basis of the scanning electron microscopy(SEM)and mechanical test results of CPB,the particle size information of CPB was extracted,and a two-dimensional particle flow code(PFC)model of CPB was established to analyze the evolution rule of mesoscopic parameters during CPB development.The embedded FISH language in PFC was used to develop a program for establishing a PFC model on the basis of the SEM results.The mesoscopic parameters of CPB samples at different curing times,such as coordination number(C_(n)),contact force chain,and rose diagram,were obtained by recording and loading and used to analyze the intrinsic relationship between mesoscopic parameter variations and macroscopic mechanical response during CPB development.It is of considerable significance to establish the physical model of CPB using the PFC to reveal the mesoscopic structure of CPB.
文摘Objective: To evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in malignant solitary pulmonary nodules and tumor size. Methods: Sixty-eight patients with malignant solitary pulmonary nodules (SPNs) (diameter 〈4 cm) underwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubitai vein at a rate of 4mL/s by using an autoinjector, 4×5 mm or 4×2.5 mm scanning mode with stable table were performed). Precontrast and postcontrast attenuation on every scan was recorded. Blood flow (BF), peak, height (PHSPN), ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio) and mean transit time (MTT) were calculated. The correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in malignant solitary pulmonary nodules and tumor size were assessed by means of linear regression analysis. Results: No significant correlations were found between the tumor size and each of the peak height (PHSPN) (35.79±10.76 Hu), ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio), (14.27%±4.37) and blood flow (BF) (30.18 mL/min/100 g±9.58) (r=0.180, P=0.142〉0.05; r=0.205, P=0.093〉0.05; r=0.008, P=0.947〉0.05). Conclusion: No significant correlations were found between the tumor size and each of the quantifiable parameters of blood flow pattern derived with dynamic CT in malignant solitary pulmonary nodules.
文摘An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.
基金Supported by Major State Basic Research Development Program of China("973" Program,No.2010CB732106)
文摘After the linear analytical method of unsteady flow theory is further improved,an innovative and faster algorithm is introduced.The water storage in a confined aquifer is derived from the water transmissivity coefficient and the water-pressure conductivity coefficient.The water transmissivity coefficient is approximated by a Taylorseries expansion of drawdown,and the water-pressure conductivity coefficient is obtained by the average drawdown.In this algorithm,the distance of the observation points from the pumping well must be short.When the distance is as short as the radius of the main pumping well,the data of the drawdown difference between the sidewall and the center of pumping well are difficult to measure,but the same results can be achieved based on the assumption that the drawdown difference approximates to the drawdown of the observation wells at a radial distance from the pumping well according to the algorithm.Without the help of charts,this algorithm is more concise and efficient,which has been verified by the test of water pumping project in Tianjin Binhai International Airport.
基金Supported by the Key Program of"National Basic Research Program of China (973 Program)" (2005CB221504) the Key Program of"National Natural Science Foundation of China" (50534080)
文摘Carried on the one-dimensional analysis to the motion state of coal-gas flow in the outburst hole, and deduced the relational expression between the motion parameters (containing of velocity, flow rate and density etc.) of bursting coal-gas flow and gas pressure in the hole, then pointed out the critical state change of coal-gas flow under different pressure conditions which had the very tremendous influence on both stability and destructiveness of the entire coal and gas outburst system. The mathematical processing and results of one-dimensional flow under the perfect condition are simple and explicit in this paper, which has the certain practical significance.
基金The project supported by the Science Foundation of Chinese Academy of Sciences
文摘The disappearance of collective flow for <sup>64</sup>Zn+<sup>58</sup>Ni collisions is studied withBUU equation.It is found that the balance energy,E<sub>bal</sub>,is very sensitive to the in-me-dium nucleon-nucleon cross section and increases with the impact parameter.
文摘OBJECTIVE: To observe the effect of Modified Erchen Decoction on cervical spondylotic vertebral arteriopathy with stagnation and blockade of phlegm-dampness syndrome and effects on cerebral blood flow parameters. METHODS: A total of 80 cervical spondylotic vertebral arteriopathy(CSA) patients with stagnation and blockade of phlegmdampness syndrome admitted to our hospital from October 2016 to April 2017 were selected and randomly divided into observation group and control group, with 40 cases in each group. The observation group was treated with Modified Erchen Decoction and the control group was given conventional treatment with Western medicine. After 4 weeks of treatment, the main clinical symptoms and signs(vertigo, neck and shoulder pain, headache, psychological and social adjustment, daily life and work) and cerebral blood flow parameters [the peak values of intracranial vertebral-basal artery diastolic blood flow velocity(Vd) and systolic blood flow velocity(Vp)] were compared between the 2 groups. The total clinical effective rate and adverse reactions during treatment were also compared. RESULTS: After treatment, the total effective rate of the observation group was 90.0%, which was significantly higher than that of the control group(77.5%). The difference between the two groups was statistically significant(P < 0.05). After treatment, The scores of vertigo, neck and shoulder pain, headache, psychology and society adaptation, daily life and work were significantly increased(P < 0.05), and the above scores of the observation group were increased more obviously. The difference between the groups was statistically significant(P < 0.05). After treatment, the levels of Vd and Vp were significantly increased(P < 0.05), and the increase of the above indexes was more obvious in the observation group. The difference between the 2 groups was statistically significant(P < 0.05). There were no significant abnormalities in blood routine, urine routine, liver function and renal function. There was no significant difference in the incidence of adverse reactions between the 2 groups.(P > 0.05). CONCLUSION: The treatment of vertebral artery type cervical spondylopathy with stagnation and blockade of phlegm-dampness syndrome by Modified Erchen Decoction can effectively relieve the main clinical symptoms and signs, improve cerebral blood flow parameters, and improve the peak values of vertebral-basal artery diastolic blood flow velocity(Vd) and systolic blood flow velocity(Vp), which is safe and effective, and helps to promote the recovery of cervical function.