Sixteen faba bean genotypes were evaluated in 13 environments in Ethiopia during the main cropping season for three years(2009–2011). The objectives of the study were to evaluate the yield stability of the genotypes ...Sixteen faba bean genotypes were evaluated in 13 environments in Ethiopia during the main cropping season for three years(2009–2011). The objectives of the study were to evaluate the yield stability of the genotypes and the relative importance of different stability parameters for improving selection in faba bean. The study was conducted using a randomized complete block design with four replications. G × E interaction and yield stability were estimated using 17 different stability parameters. Pooled analysis of variance for grain yield showed that the main effects of both genotypes and environments, and the interaction effect, were highly significant(P ≤ 0.001) and(P ≤ 0.01), respectively. The environment main effect accounted for 89.27% of the total yield variation, whereas genotype and G × E interaction effects accounted for 2.12% and 3.31%, respectively.Genotypic superiority index(Pi) and FT3 were found to be very informative for selecting both high-yielding and stable faba bean genotypes. Twelve of the 17 stability parameters,including CVi, RS, α, λ, S2 di, bi, S(2)i, Wi, σ2i, EV, P59, and ASV, were influenced simultaneously by both yield and stability. They should accordingly be used as complementary criteria to select genotypes with high yield and stability. Although none of the varieties showed consistently superior performance across all environments, the genotype EK 01024-1-2ranked in the top third of the test entries in 61.5% of the test environments and was identified as the most stable genotype, with type I stability. EK 01024-1-2 also showed a17.0% seed size advantage over the standard varieties and was released as a new variety in2013 for wide production and named "Gora". Different stability parameters explained genotypic performance differently, irrespective of yield performance. It was accordingly concluded that assessment of G × E interaction and yield stability should not be based on a single or a few stability parameters but rather on a combination of stability parameters.展开更多
Bread wheat (Triticum aestivum L.) is most important cereal crop in Ethiopia. Lack of genotypes with wide stability across environments has been one of the most important constraints of wheat production in the country...Bread wheat (Triticum aestivum L.) is most important cereal crop in Ethiopia. Lack of genotypes with wide stability across environments has been one of the most important constraints of wheat production in the country. Field experiments were conducted in Halaba and Bule, South Ethiopia, in 2016 and 2017, in order to estimate grain yield stability and association among stability parameters. Fifteen improved bread wheat genotypes were grown under randomized complete block design with three replications. Mean yield for Halaba 2016, Halaba 2017, Bule 2016 and Bule 2017 was 3.83, 1.89, 2.90 and 3.59 tons/ha, respectively. Genotypes Lemu (3.25 tons/ha) and Mandoyu (3.18 tons/ha) had high mean yield, and low values of environmental variance (S2i), coefficient of variation (CVi), stability variance (δ2i), ecovalence (Wi) and deviation from regression (S2di). Genotypes Biqa (3.69 tons/ha) and Shorima (3.66 tons/ha) had high mean yield, coefficient of regression (bi) and coefficient of determination (R2i ≥ 0.94) as well as low values of δ2i, Wi and S2di. Grain yield had positive rank correlation with bi (r = 0.75, p 2i (r = 0.70, p δ2i, Wi and S2di was high (r ≥ 0.98, p , Mandoyu and Hidase, and Biqa and Shorima would be recommended for wide adaption, and for more favorable environments, respectively. It could also be suggested that one of Wi, δ2i, S2di and rank sum would be used for ranking of genotypes.展开更多
<p align="left" style="text-align:justify;"> <span style="font-family:;" "=""><span style="font-family:Verdana;">Tef [</span><i><...<p align="left" style="text-align:justify;"> <span style="font-family:;" "=""><span style="font-family:Verdana;">Tef [</span><i><span style="font-family:Verdana;">Eragrostis</span></i> <i><span style="font-family:Verdana;">tef</span></i><span style="font-family:Verdana;"> (Zucc.)Trotter]) is one of the most important cereal crops </span></span><span style="font-family:Verdana;">grown </span><span style="font-family:Verdana;">in Ethiopia. Tef production has been partly constrained by low yield and less stability of the genotypes under cultivation. Field experiments were carried out in Halaba, Loka Abaya, Bensa and Areka, South Ethiopia, from August to November, during 2016 and 2017 main cropping seasons, in order to estimate yield stability </span><span style="font-family:Verdana;">and the association between AMMI analysis and other stability parameters. Experiments were laid out in randomized complete block design with three replications</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> using fourteen improved tef genotypes. Mean yield for Halaba, Loka Abaya2016, Loka Abaya2017, Bensa, Areka2016 and Areka2017 was 0.99, 0.45, 0.48, 1.50, 1.62 and 0.77 tons/ha, respectively. Genotypes A</span><span><span style="font-family:Verdana;">marach, Boset, Simada, and Tseday exhibited high mean yield of 1.09, 1.10, 1.07 and 1.07 tons/ha, respectively. AMMI stability value (ASV) ranged from 0.17 (genotype Lakech) to 1.40 (Amarach);yield stability index (YSI) from 7 (Lakech) to 25 (Quncho);and superiority measure (</span><i><span style="font-family:Verdana;">P</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;">) from 0.015 (Boset) to 0.145 (Dega Tef). Rank correlation of yield with </span><i><span style="font-family:Verdana;">P</span><sub><span style="font-family:Verdana;">i</span></sub></i></span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.97, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01), ASV with </span><i><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;"> and </span></span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"> </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.85, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01) and that between </span><i><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;"> and </span></span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><span style="font-family:" color:#323e32;background:#917a5f;"=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 1.00, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">was high. Rank correlation of </span><span style="font-family:Verdana;">YSI with </span><span style="font-family:;" "=""><span style="font-family:Verdana;">yield (</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.57, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.05)</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> ASV </span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.</span><span style="font-family:Verdana;">75</span><span style="font-family:;" "=""><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.0</span></span><span style="font-family:Verdana;">1), </span><span style="font-family:;" "=""><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">P</span><sub><span style="font-family:Verdana;">i</span></sub></i></span><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.</span><span style="font-family:Verdana;">68</span><span style="font-family:;" "=""><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.0</span></span><span style="font-family:Verdana;">1) and </span><i><span style="font-family:;" "=""><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><span style="font-family:" color:#323e32;background:#917a5f;"=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i> </span><span style="font-family:Verdana;">=</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 0.67, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01) was also positive. The present study showed that </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">genotypes Etsub, Simada and Tseday would be recommended for high yield and wide adaptation, and ASV would be used alone or jointly with YSI, </span><i><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;"> and </span></span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"> </span></span><span style="font-family:Verdana;">for ranking of genotyp</span><span style="font-family:Verdana;">es.</span> </p>展开更多
In this paper, we are interested to find the most sensitive parameter, local and global stability of ovarian tumor growth model. For sensitivity analysis, we use Latin Hypercube Sampling (LHS) method to generate sampl...In this paper, we are interested to find the most sensitive parameter, local and global stability of ovarian tumor growth model. For sensitivity analysis, we use Latin Hypercube Sampling (LHS) method to generate sample points and Partial Rank Correlation Coefficient (PRCC) method, uses those sample points to find out which parameters are important for the model. Based on our findings, we suggest some treatment strategies. We investigate the sensitivity of the parameters for tumor volume, <em>y</em>, cell nutrient density, <em>Q</em> and maximum tumor size, <em>ymax</em>. We also use Scatter Plot method using LHS samples to show the consistency of the results obtained by using PRCC. Moreover, we discuss the qualitative analysis of ovarian tumor growth model investigating the local and global stability.展开更多
Monte Carlo(MC)法在目前边坡可靠度分析中是一种相对精确的方法,应用广泛,受问题限制的影响较小,适应性很强,其误差仅与标准差和样本容量有关。但其精度受随机抽样的可靠性和模拟次数制约,收敛速度慢,影响了实际使用。在极限平衡方法...Monte Carlo(MC)法在目前边坡可靠度分析中是一种相对精确的方法,应用广泛,受问题限制的影响较小,适应性很强,其误差仅与标准差和样本容量有关。但其精度受随机抽样的可靠性和模拟次数制约,收敛速度慢,影响了实际使用。在极限平衡方法的基础上,用拉丁超立方抽样(Latin hypercube sampling,LHS)方法代替MC法的随机抽样,考虑边坡参数的变异性和相关性进行边坡可靠度分析。讨论了LHS法、MC法中可靠指标的各种计算方法,建议以破坏概率、安全系数均值和标准差作为评价指标。算例显示LHS法较MC法效率上有很大改善:较少的抽样样本就能反映参数的概率分布,可靠度分析收敛快,不需要大量的模拟,因此,值得在边坡可靠度分析中推广应用。也将工程上常用的均匀设计和正交设计用于边坡可靠度分析,结果表明,正交设计结果和中心点法比较接近,而均匀设计得到的结果则是不可靠的。展开更多
基金supported by the Ethiopian Institute of Agricultural Research
文摘Sixteen faba bean genotypes were evaluated in 13 environments in Ethiopia during the main cropping season for three years(2009–2011). The objectives of the study were to evaluate the yield stability of the genotypes and the relative importance of different stability parameters for improving selection in faba bean. The study was conducted using a randomized complete block design with four replications. G × E interaction and yield stability were estimated using 17 different stability parameters. Pooled analysis of variance for grain yield showed that the main effects of both genotypes and environments, and the interaction effect, were highly significant(P ≤ 0.001) and(P ≤ 0.01), respectively. The environment main effect accounted for 89.27% of the total yield variation, whereas genotype and G × E interaction effects accounted for 2.12% and 3.31%, respectively.Genotypic superiority index(Pi) and FT3 were found to be very informative for selecting both high-yielding and stable faba bean genotypes. Twelve of the 17 stability parameters,including CVi, RS, α, λ, S2 di, bi, S(2)i, Wi, σ2i, EV, P59, and ASV, were influenced simultaneously by both yield and stability. They should accordingly be used as complementary criteria to select genotypes with high yield and stability. Although none of the varieties showed consistently superior performance across all environments, the genotype EK 01024-1-2ranked in the top third of the test entries in 61.5% of the test environments and was identified as the most stable genotype, with type I stability. EK 01024-1-2 also showed a17.0% seed size advantage over the standard varieties and was released as a new variety in2013 for wide production and named "Gora". Different stability parameters explained genotypic performance differently, irrespective of yield performance. It was accordingly concluded that assessment of G × E interaction and yield stability should not be based on a single or a few stability parameters but rather on a combination of stability parameters.
文摘Bread wheat (Triticum aestivum L.) is most important cereal crop in Ethiopia. Lack of genotypes with wide stability across environments has been one of the most important constraints of wheat production in the country. Field experiments were conducted in Halaba and Bule, South Ethiopia, in 2016 and 2017, in order to estimate grain yield stability and association among stability parameters. Fifteen improved bread wheat genotypes were grown under randomized complete block design with three replications. Mean yield for Halaba 2016, Halaba 2017, Bule 2016 and Bule 2017 was 3.83, 1.89, 2.90 and 3.59 tons/ha, respectively. Genotypes Lemu (3.25 tons/ha) and Mandoyu (3.18 tons/ha) had high mean yield, and low values of environmental variance (S2i), coefficient of variation (CVi), stability variance (δ2i), ecovalence (Wi) and deviation from regression (S2di). Genotypes Biqa (3.69 tons/ha) and Shorima (3.66 tons/ha) had high mean yield, coefficient of regression (bi) and coefficient of determination (R2i ≥ 0.94) as well as low values of δ2i, Wi and S2di. Grain yield had positive rank correlation with bi (r = 0.75, p 2i (r = 0.70, p δ2i, Wi and S2di was high (r ≥ 0.98, p , Mandoyu and Hidase, and Biqa and Shorima would be recommended for wide adaption, and for more favorable environments, respectively. It could also be suggested that one of Wi, δ2i, S2di and rank sum would be used for ranking of genotypes.
文摘<p align="left" style="text-align:justify;"> <span style="font-family:;" "=""><span style="font-family:Verdana;">Tef [</span><i><span style="font-family:Verdana;">Eragrostis</span></i> <i><span style="font-family:Verdana;">tef</span></i><span style="font-family:Verdana;"> (Zucc.)Trotter]) is one of the most important cereal crops </span></span><span style="font-family:Verdana;">grown </span><span style="font-family:Verdana;">in Ethiopia. Tef production has been partly constrained by low yield and less stability of the genotypes under cultivation. Field experiments were carried out in Halaba, Loka Abaya, Bensa and Areka, South Ethiopia, from August to November, during 2016 and 2017 main cropping seasons, in order to estimate yield stability </span><span style="font-family:Verdana;">and the association between AMMI analysis and other stability parameters. Experiments were laid out in randomized complete block design with three replications</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> using fourteen improved tef genotypes. Mean yield for Halaba, Loka Abaya2016, Loka Abaya2017, Bensa, Areka2016 and Areka2017 was 0.99, 0.45, 0.48, 1.50, 1.62 and 0.77 tons/ha, respectively. Genotypes A</span><span><span style="font-family:Verdana;">marach, Boset, Simada, and Tseday exhibited high mean yield of 1.09, 1.10, 1.07 and 1.07 tons/ha, respectively. AMMI stability value (ASV) ranged from 0.17 (genotype Lakech) to 1.40 (Amarach);yield stability index (YSI) from 7 (Lakech) to 25 (Quncho);and superiority measure (</span><i><span style="font-family:Verdana;">P</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;">) from 0.015 (Boset) to 0.145 (Dega Tef). Rank correlation of yield with </span><i><span style="font-family:Verdana;">P</span><sub><span style="font-family:Verdana;">i</span></sub></i></span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.97, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01), ASV with </span><i><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;"> and </span></span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"> </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.85, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01) and that between </span><i><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;"> and </span></span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><span style="font-family:" color:#323e32;background:#917a5f;"=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 1.00, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">was high. Rank correlation of </span><span style="font-family:Verdana;">YSI with </span><span style="font-family:;" "=""><span style="font-family:Verdana;">yield (</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.57, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.05)</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> ASV </span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.</span><span style="font-family:Verdana;">75</span><span style="font-family:;" "=""><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.0</span></span><span style="font-family:Verdana;">1), </span><span style="font-family:;" "=""><span style="font-family:Verdana;">and </span><i><span style="font-family:Verdana;">P</span><sub><span style="font-family:Verdana;">i</span></sub></i></span><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">r</span></i><span style="font-family:Verdana;"> = 0.</span><span style="font-family:Verdana;">68</span><span style="font-family:;" "=""><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.0</span></span><span style="font-family:Verdana;">1) and </span><i><span style="font-family:;" "=""><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><span style="font-family:" color:#323e32;background:#917a5f;"=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(</span><i><span style="font-family:Verdana;">r</span></i> </span><span style="font-family:Verdana;">=</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> 0.67, </span><i><span style="font-family:Verdana;">p</span></i><span style="font-family:Verdana;"> < 0.01) was also positive. The present study showed that </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">genotypes Etsub, Simada and Tseday would be recommended for high yield and wide adaptation, and ASV would be used alone or jointly with YSI, </span><i><span style="font-family:Verdana;">W</span><sub><span style="font-family:Verdana;">i</span></sub></i><span style="font-family:Verdana;"> and </span></span><i><span style="font-family:Verdana;"><i>δ</i></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><sub>i</sub><sup style="margin-left:-6px;">2</sup></span><i><span style="font-family:Verdana;"></span></i></span></i><i><span style="font-family:;" "=""> </span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"> </span></span><span style="font-family:Verdana;">for ranking of genotyp</span><span style="font-family:Verdana;">es.</span> </p>
文摘In this paper, we are interested to find the most sensitive parameter, local and global stability of ovarian tumor growth model. For sensitivity analysis, we use Latin Hypercube Sampling (LHS) method to generate sample points and Partial Rank Correlation Coefficient (PRCC) method, uses those sample points to find out which parameters are important for the model. Based on our findings, we suggest some treatment strategies. We investigate the sensitivity of the parameters for tumor volume, <em>y</em>, cell nutrient density, <em>Q</em> and maximum tumor size, <em>ymax</em>. We also use Scatter Plot method using LHS samples to show the consistency of the results obtained by using PRCC. Moreover, we discuss the qualitative analysis of ovarian tumor growth model investigating the local and global stability.