Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interf...Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR) was the optimal parameter. Mean Simpson index (MD), mean Shannon-Weaver index of genetic diversity (M1) and mean polymorphism information content (MPIC) were important evaluating parameters. The variable rate of coefficient of variation (VR) could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p) could be used as a determination parameter for the size of core collection. Mean difference percentage (MD) was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.展开更多
A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single mode...A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.展开更多
An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar par...An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar parameters of interest of the DAR(1) model. Theoretically, the proposed method has rate of convergence O(n-3/2). Applying the proposed method to a real-life data set shows that the results obtained by the proposed method can be quite different from the results obtained by the existing methods. Results from Monte Carlo simulation studies illustrate the supreme accuracy of the proposed method even when the sample size is small.展开更多
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
In recent decades,the generation of Municipal Solid Waste(MSW)is steadily increasing due to urbanization and technological advancement.The col-lection and disposal of municipal solid waste cause considerable environme...In recent decades,the generation of Municipal Solid Waste(MSW)is steadily increasing due to urbanization and technological advancement.The col-lection and disposal of municipal solid waste cause considerable environmental degradation,making MSW management a global priority.Waste-to-energy(WTE)using thermochemical process has been identified as the key solution in this area.After evaluating many automated Higher Heating Value(HHV)predic-tion approaches,an Optimal Deep Learning-based HHV Prediction(ODL-HHVP)model for MSW management has been developed.The objective of the ODL-HHVP model is to forecast the HHV of municipal solid waste,based on its oxy-gen,water,hydrogen,carbon,nitrogen,sulphur and ash constituents.In addition,the ODL-HHVP model contains a Deep Support Vector Machine(DSVM)regres-sion component that can accurately predict the HHV.In addition,the Beetle Swarm Optimization(BSO)method is utilised as a hyperparameter optimizer in conjunction with the DSVM model,resulting in the highest HHV prediction accu-racy.A comprehensive simulation study is conducted to validate the performance of the ODL-HHVP method.The Multiple Linear Regression(MLR),Genetic Pro-gramming(GP),Resilient backpropagation(RP),Levenberg Marquardt(LM)and DSVM approaches have attained an ineffective result with RMSEs of 4.360,2.870,3.590,3.100 and 3.050,respectively.The experimentalfindings demon-strate that the ODL-HHVP technique outperforms existing state-of-art technolo-gies in a variety of respects.展开更多
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与SPAD的相关关系,构建了...为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和BP神经网络的SPAD估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与BP神经网络模型进行比较。结果表明:SPAD值与一阶微分光谱在763nm处具有最大相关系数(R=0.901);以763 nm处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片SPAD估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测SPAD值作为输出,构建BP神经网络模型,其建模与验模R2分别为0.887和0.896,RMSE为2.782,RE为4.59%,与其他回归模型相比,BP神经网络模型预测精度最高,研究表明BP神经网络对叶绿素具有较好的预测能力,是估算玉米叶片SPAD值的一种实时高效的方法。展开更多
基金the National Natural Science Foundation of China (Grant No. 30270759) the Science and Technology Department of Zhejiang Province (Grant No. 2005C32001).
文摘Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR) was the optimal parameter. Mean Simpson index (MD), mean Shannon-Weaver index of genetic diversity (M1) and mean polymorphism information content (MPIC) were important evaluating parameters. The variable rate of coefficient of variation (VR) could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p) could be used as a determination parameter for the size of core collection. Mean difference percentage (MD) was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.
基金supported by Innovation Project of Chinese Academy of Sciences
文摘A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.
文摘An AR(1) model with ARCH(1) error structure is known as the first-order double autoregressive (DAR(1)) model. In this paper, a conditional likelihood based method is proposed to obtain inference for the two scalar parameters of interest of the DAR(1) model. Theoretically, the proposed method has rate of convergence O(n-3/2). Applying the proposed method to a real-life data set shows that the results obtained by the proposed method can be quite different from the results obtained by the existing methods. Results from Monte Carlo simulation studies illustrate the supreme accuracy of the proposed method even when the sample size is small.
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
文摘In recent decades,the generation of Municipal Solid Waste(MSW)is steadily increasing due to urbanization and technological advancement.The col-lection and disposal of municipal solid waste cause considerable environmental degradation,making MSW management a global priority.Waste-to-energy(WTE)using thermochemical process has been identified as the key solution in this area.After evaluating many automated Higher Heating Value(HHV)predic-tion approaches,an Optimal Deep Learning-based HHV Prediction(ODL-HHVP)model for MSW management has been developed.The objective of the ODL-HHVP model is to forecast the HHV of municipal solid waste,based on its oxy-gen,water,hydrogen,carbon,nitrogen,sulphur and ash constituents.In addition,the ODL-HHVP model contains a Deep Support Vector Machine(DSVM)regres-sion component that can accurately predict the HHV.In addition,the Beetle Swarm Optimization(BSO)method is utilised as a hyperparameter optimizer in conjunction with the DSVM model,resulting in the highest HHV prediction accu-racy.A comprehensive simulation study is conducted to validate the performance of the ODL-HHVP method.The Multiple Linear Regression(MLR),Genetic Pro-gramming(GP),Resilient backpropagation(RP),Levenberg Marquardt(LM)and DSVM approaches have attained an ineffective result with RMSEs of 4.360,2.870,3.590,3.100 and 3.050,respectively.The experimentalfindings demon-strate that the ODL-HHVP technique outperforms existing state-of-art technolo-gies in a variety of respects.