Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations...Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.展开更多
Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is d...Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.展开更多
Worm and worm gear are modeled under development environment in AutoCAD based on the principle of ordinary cylindrical worm drive. The drawing commands available in AutoCAD are used to develop worm blank and cutter mo...Worm and worm gear are modeled under development environment in AutoCAD based on the principle of ordinary cylindrical worm drive. The drawing commands available in AutoCAD are used to develop worm blank and cutter models. The solid models of worm and worm gear are obtained through the use of the commands, move, rotate and subtract, to simulate the generating cutting movement on the gear cutting machine. Autolisp language is utilized in programming for parametric modeling of worm and worm gear. The developed program can automatically draw worm and worm gear when users load the wlwg program, input the modulus and the number of threads, handedness, and other parameters. The operation is simple and accurate, providing potentials to speed up product design process and improve efficiency.展开更多
Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study th...Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.展开更多
To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compl...To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.展开更多
Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has ...Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has been carried out in this paper. We introduce a time-dependent parameter F, which denotes the ratio betWeen the mantle material involved in whole mantle convection and the material of the entire mantle, and introduce a local Rayleigh number Raloc as well as two critical numbers Ra1 and Ra2. These parameters are used to describe the stability of the phase boundary between the upper and lower mantle. The result shows that the mixed mantle convection model is able to simulate the episodic tectonic evolution of the Earth.展开更多
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electro...Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.展开更多
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate con...A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate constant formula is derived from the transition state theory and the coking amount is correlated to the properties of the intermediate substance [i,m].In composing the cracking reaction network for feedstock and product oils,only the product PC m of the proposed generic reaction is used,which together with a criterion for excluding exothermic reactions,distinctly reduces the number of reactions in the network.With the proposed cracking reaction scheme coupled with special pseudo-components,a predictive one-dimensional steady state model for fluid catalytic cracking risers is formulated in the sense that for a given riser and given catalyst,the model parameters are independent of stock oils,product schemes and other operational conditions.The great correlating and predicting capability of the resulted model is tested with production data in different scenarios of four commercial risers.展开更多
With the cost estimation of military aircraft as the research object, this paper aims to study the contradiction between the choice of explanatory variables in index modeling and the maintaining of model validity. It ...With the cost estimation of military aircraft as the research object, this paper aims to study the contradiction between the choice of explanatory variables in index modeling and the maintaining of model validity. It analyzes and establishes a cost estimation modeling concept based on an Effectiveness Index and studies the way to construct Effectiveness Indexes for the sake of cost estimation modeling. Based on a case study, the paper establishes and analyzes the Effectiveness Index-based cost estimation models and DAPCA (Development And Procurement Costs of Aircraft) models developed by the RAND Corparation . The comparison of these models shows that the Effective- ness Index-based cost parameter models not only comprehensively consider the obvious driving parameter indexes of the cost, but reduces the variables of regressive analysis, hence giving the model a higher reliability.展开更多
The thermal state of the early Earth’s interior and its way of cooling are crucial for its subsequent evo-lution.Earth is initially hot as it acquired enormous heat in response to violent processes during its formati...The thermal state of the early Earth’s interior and its way of cooling are crucial for its subsequent evo-lution.Earth is initially hot as it acquired enormous heat in response to violent processes during its formation,e.g.,the Moon-forming giant impact,the segregation and formation of its metallic core,the tidal interaction with the early Moon,and the decay of radioactive elements,etc.In the meantime,the cooling mechanisms of early Earth’s mantle remain elusive despite their importance,and the previously proposed cooling models of the mantle are controversial.In this paper,we first reviewed several prevalent parameter-ized thermal evolution models of the early mantle.The models give unrealistic predictions since they were estab-lished solely based on a single tectonic regime,such as the stagnant-lid regime,or relied on the disputable existence of the plate tectonics prior to-3.5 Ga.Then we argue that the mantle should have started to cool down from a very hot state after the solidification of the ferocious magma ocean.Instead of using one single scaling law to describe a single-stage model,we suggest that an episodic multi-stage cooling model(EMCM)of the early mantle could be more plausible to account for the mantle’s early cooling process.The model reconciles with the fact that the mantle cools down from a hot state prior to*3.5 Ga and can also explain the well-constrained post-3.5 Ga thermal history of the mantle.展开更多
This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been pu...This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.展开更多
To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not...To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results.展开更多
This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and k...This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2).展开更多
Lithium-ion batteries have been rapidly developed as clean energy sources in many industrial fields,such as new energy vehicles and energy storage.The core issues hindering their further promotion and application are ...Lithium-ion batteries have been rapidly developed as clean energy sources in many industrial fields,such as new energy vehicles and energy storage.The core issues hindering their further promotion and application are reliability and safety.A digital twin model that maps onto the physical entity of the battery with high simulation accuracy helps to monitor internal states and improve battery safety.This work focuses on developing a digital twin model via a mechanism-data-driven parameter updating algorithm to increase the simulation accuracy of the internal and external characteristics of the full-time domain battery under complex working conditions.An electrochemical model is first developed with the consideration of how electrode particle size impacts battery characteristics.By adding the descriptions of temperature distribution and particle-level stress,a multi-particle size electrochemical-thermal-mechanical coupling model is established.Then,considering the different electrical and thermal effect among individual cells,a model for the battery pack is constructed.A digital twin model construction method is finally developed and verified with battery operating data.展开更多
This paper mainly deals with the reservoir on the heat and mass transfer and mass and energy balance in a geothermal field.On the basis of briefing the general characteristics of the reservoir and the supposition of t...This paper mainly deals with the reservoir on the heat and mass transfer and mass and energy balance in a geothermal field.On the basis of briefing the general characteristics of the reservoir and the supposition of the reservoir modeling,the paper emphasizes the mathematical descriptions of hydra thermal transportation and convection by two methods according to the different models,such as lumped parameter model and distributed parameter model.It is effective to use these models in simulating the heterogeneous,and anisotropical fracture reservoir for the designed lifetime of 15 years.展开更多
A novel MEMS inductor consisting of a planar single crystalline silicon spiral with a copper surface coating as the conductor is presented. Using a silicon-glass anodic bonding and deep etching formation-and-release p...A novel MEMS inductor consisting of a planar single crystalline silicon spiral with a copper surface coating as the conductor is presented. Using a silicon-glass anodic bonding and deep etching formation-and-release process,a 40μm-thick silicon spiral is formed, which is suspended on a glass substrate to eliminate substrate loss. The surfaces of the silicon spiral are coated with highly conformal copper by electroless plating to reduce the resis- tive loss in the conductor,with thin nickel film plated on the surface of the copper layer for final surface passivation. The fabricated inductor exhibits a self-resonance frequency higher than 15GHz,with a quality factor of about 40 and an inductance of over 5nil at 11.3GHz. Simulations based on a compact equivalent circuit model of the inductor and parameter extraction using a characteristic-function approach are carried out,and good agreement with measurements is obtained.展开更多
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Eul...The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed- parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complet...By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.展开更多
基金This research was funded by the National Natural Science Foundation of China(Grant Nos.31870426).
文摘Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)
文摘Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.
文摘Worm and worm gear are modeled under development environment in AutoCAD based on the principle of ordinary cylindrical worm drive. The drawing commands available in AutoCAD are used to develop worm blank and cutter models. The solid models of worm and worm gear are obtained through the use of the commands, move, rotate and subtract, to simulate the generating cutting movement on the gear cutting machine. Autolisp language is utilized in programming for parametric modeling of worm and worm gear. The developed program can automatically draw worm and worm gear when users load the wlwg program, input the modulus and the number of threads, handedness, and other parameters. The operation is simple and accurate, providing potentials to speed up product design process and improve efficiency.
基金supported by the National Natural Science Foundation of China(70971103)the Specialized Research Fund for the Doctora Program of Higher Education(20120143110001)
文摘Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.
基金National Hi-tech Research Development Program of China(863 Program,No.2001AA505000-11)
文摘To investigate the dynamic characteristics and damping theory of the passive hydraulic engine mount (PHEM), numerical prediction is performed through lumped parameter model. System parameters, including volume compliance of the decoupler chamber, effective piston area, fluid inertia and resistance of inertia track and direct-decoupler, are identified by means of experiments and finite element method (FEM). Dynamic behaviors are tested with elastomer test system for purpose of validating PHEM. With incorporation of inertia track and direct-decoupler, PHEM behaves effective and efficient vibration isolation in range of both low and high frequencies. The comparison of the numerical results with the experimental observations shows that the present PHEM achieves fairly good performance for the engine vibration isolation.
文摘Simple parameterized models, either whole mantle convection or layered mantleconvection, cannot explain the tectonic characteristics of the Earth's evolution history, therefore a mixed mantle convection model has been carried out in this paper. We introduce a time-dependent parameter F, which denotes the ratio betWeen the mantle material involved in whole mantle convection and the material of the entire mantle, and introduce a local Rayleigh number Raloc as well as two critical numbers Ra1 and Ra2. These parameters are used to describe the stability of the phase boundary between the upper and lower mantle. The result shows that the mixed mantle convection model is able to simulate the episodic tectonic evolution of the Earth.
基金This work was supported by the Fundamental Research Funds for the Central Universities (No.2017JBM003), the National Natural Science Foundation of China (No.61575053, No.61504008), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130009120042).
文摘Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(21676012)the Fundamental Research Funds for the Central Universities(Project YS1404)the National High Technology Research and Development Program of China(2007AA04Z191)
文摘A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate constant formula is derived from the transition state theory and the coking amount is correlated to the properties of the intermediate substance [i,m].In composing the cracking reaction network for feedstock and product oils,only the product PC m of the proposed generic reaction is used,which together with a criterion for excluding exothermic reactions,distinctly reduces the number of reactions in the network.With the proposed cracking reaction scheme coupled with special pseudo-components,a predictive one-dimensional steady state model for fluid catalytic cracking risers is formulated in the sense that for a given riser and given catalyst,the model parameters are independent of stock oils,product schemes and other operational conditions.The great correlating and predicting capability of the resulted model is tested with production data in different scenarios of four commercial risers.
文摘With the cost estimation of military aircraft as the research object, this paper aims to study the contradiction between the choice of explanatory variables in index modeling and the maintaining of model validity. It analyzes and establishes a cost estimation modeling concept based on an Effectiveness Index and studies the way to construct Effectiveness Indexes for the sake of cost estimation modeling. Based on a case study, the paper establishes and analyzes the Effectiveness Index-based cost estimation models and DAPCA (Development And Procurement Costs of Aircraft) models developed by the RAND Corparation . The comparison of these models shows that the Effective- ness Index-based cost parameter models not only comprehensively consider the obvious driving parameter indexes of the cost, but reduces the variables of regressive analysis, hence giving the model a higher reliability.
基金supported by the strategic priority research program(B)of CAS(XDB41000000)Chinese NSF projects(42130114)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by the Chinese National Space Administration.
文摘The thermal state of the early Earth’s interior and its way of cooling are crucial for its subsequent evo-lution.Earth is initially hot as it acquired enormous heat in response to violent processes during its formation,e.g.,the Moon-forming giant impact,the segregation and formation of its metallic core,the tidal interaction with the early Moon,and the decay of radioactive elements,etc.In the meantime,the cooling mechanisms of early Earth’s mantle remain elusive despite their importance,and the previously proposed cooling models of the mantle are controversial.In this paper,we first reviewed several prevalent parameter-ized thermal evolution models of the early mantle.The models give unrealistic predictions since they were estab-lished solely based on a single tectonic regime,such as the stagnant-lid regime,or relied on the disputable existence of the plate tectonics prior to-3.5 Ga.Then we argue that the mantle should have started to cool down from a very hot state after the solidification of the ferocious magma ocean.Instead of using one single scaling law to describe a single-stage model,we suggest that an episodic multi-stage cooling model(EMCM)of the early mantle could be more plausible to account for the mantle’s early cooling process.The model reconciles with the fact that the mantle cools down from a hot state prior to*3.5 Ga and can also explain the well-constrained post-3.5 Ga thermal history of the mantle.
文摘This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.
基金Supported by the China National Oil and Gas Major Project(2016ZX05010-003)PetroChina Science and Technology Major Project(2019B1210,2021DJ1201).
文摘To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results.
文摘This work (in two parts) will present a novel predictive modeling methodology aimed at obtaining “best-estimate results with reduced uncertainties” for the first four moments (mean values, covariance, skewness and kurtosis) of the optimally predicted distribution of model results and calibrated model parameters, by combining fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses to model parameters. Underlying the construction of this fourth-order predictive modeling methodology is the “maximum entropy principle” which is initially used to obtain a novel closed-form expression of the (moments-constrained) fourth-order Maximum Entropy (MaxEnt) probability distribution constructed from the first four moments (means, covariances, skewness, kurtosis), which are assumed to be known, of an otherwise unknown distribution of a high-dimensional multivariate uncertain quantity of interest. This fourth-order MaxEnt distribution provides optimal compatibility of the available information while simultaneously ensuring minimal spurious information content, yielding an estimate of a probability density with the highest uncertainty among all densities satisfying the known moment constraints. Since this novel generic fourth-order MaxEnt distribution is of interest in its own right for applications in addition to predictive modeling, its construction is presented separately, in this first part of a two-part work. The fourth-order predictive modeling methodology that will be constructed by particularizing this generic fourth-order MaxEnt distribution will be presented in the accompanying work (Part-2).
基金support by Shandong Province National Natural Science Foundation of China(No.ZR2023QE036).
文摘Lithium-ion batteries have been rapidly developed as clean energy sources in many industrial fields,such as new energy vehicles and energy storage.The core issues hindering their further promotion and application are reliability and safety.A digital twin model that maps onto the physical entity of the battery with high simulation accuracy helps to monitor internal states and improve battery safety.This work focuses on developing a digital twin model via a mechanism-data-driven parameter updating algorithm to increase the simulation accuracy of the internal and external characteristics of the full-time domain battery under complex working conditions.An electrochemical model is first developed with the consideration of how electrode particle size impacts battery characteristics.By adding the descriptions of temperature distribution and particle-level stress,a multi-particle size electrochemical-thermal-mechanical coupling model is established.Then,considering the different electrical and thermal effect among individual cells,a model for the battery pack is constructed.A digital twin model construction method is finally developed and verified with battery operating data.
文摘This paper mainly deals with the reservoir on the heat and mass transfer and mass and energy balance in a geothermal field.On the basis of briefing the general characteristics of the reservoir and the supposition of the reservoir modeling,the paper emphasizes the mathematical descriptions of hydra thermal transportation and convection by two methods according to the different models,such as lumped parameter model and distributed parameter model.It is effective to use these models in simulating the heterogeneous,and anisotropical fracture reservoir for the designed lifetime of 15 years.
文摘A novel MEMS inductor consisting of a planar single crystalline silicon spiral with a copper surface coating as the conductor is presented. Using a silicon-glass anodic bonding and deep etching formation-and-release process,a 40μm-thick silicon spiral is formed, which is suspended on a glass substrate to eliminate substrate loss. The surfaces of the silicon spiral are coated with highly conformal copper by electroless plating to reduce the resis- tive loss in the conductor,with thin nickel film plated on the surface of the copper layer for final surface passivation. The fabricated inductor exhibits a self-resonance frequency higher than 15GHz,with a quality factor of about 40 and an inductance of over 5nil at 11.3GHz. Simulations based on a compact equivalent circuit model of the inductor and parameter extraction using a characteristic-function approach are carried out,and good agreement with measurements is obtained.
基金supported by the National Natural Science Foundation of China (Grant 11172087)
文摘The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed- parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
文摘By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.